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PROPERTIES OF A SCALAR GLUEBALL!

J.LANIK®, JINR, Dubna

4:(1240) particle. Moreover, the SU(2) xSU(2) coupling rule explains also the existing

experimental data for decays of the tensor glueball candidate © (1700) into pseudoscalar
mesons.

CBOMICTBA CKAJNSPHOT 0 I'TOBOJA

B pa6ote TPHBOAMTCA JETaNbHbLIN AHANH3 CBI3M CKANAPHOTO ro6ona ¢ IceBIocKa-
JIAPHBIMA ME30HAMH B NpPENNOXEHHOK pbaHee Mopenn 3dgexTHBHOrO Jlarpamxnana.
Ioxa3ano, uTo ata crsias yRomneTBopsieT cxeme SU(2) x SU(2). 31a monens ue apoTH-
BOPEYHT ITIOGONLHBIM IpENCKa3aHHsIM RJIA CKANAPHOM YaCTHILE 9:(1240). Kpome TOro,
cxeMa ceasn SU(2) x SU(2) obbscuser Takwxe CYWECTBYIOMHE IKCIEPUMEHTAIbHbIC

AaHEPle MO pacnaly TeH3OpHO# rmoGoNLHOK qactunst © (1700) [ICEBROCKANIAPHEIE
ME30HBI.

LINTRODUCTION

An exciting prediction of QCD as the theory of strong interactions is the
existence of glueballs, bound states made up of gluons [ 1—4]. However, a definite
verification of the prediction has not been established yet. There have been

these states one should know not only their masses and quantum numbers but also
their decays to ordinary hadrons. This is especially important since the glueball
candidates [5—7, 10] do not behave in their decays as one naturally expects [13).
Since the glueballs are flavour singlets, it is expected [13] that hey are equally
coupled to all flavours and so their decays into, e. g. x*x~ and K*K"~ mesons




should only differ.by phase space factors increasing thus the decay to pions.
However, experimentally for the glueball candidates [5—7, 10, 14] the opposite
has been found.

Independent theoretical results [15, 16] and, maybe, experimental indications
{5—10] show that the scalar glueball is probybly the lightest with its mass around
1 GeV. Hence is the number of its hadronic decay modes in limited ; it decays only
to the lighter pseudoscalar mesons. This suggests that in orer to understand the
decay properties of the scalar glueball, it is highly desirable to have a nontrivial
model describing interactions between this glueball and pseudoscalar mesons.
Moreover, one can hope that the main characteristics of the model can even be
generally valid for interactions of glueballs with pseudoscalar mesons.

Recetly, an effective Lagrangian model of this type has been suggested in our
paper [17]. This model has been shown [17] to satisfy the anomaly relation of the
trace of the energy-momentum tensor of QCD [18] and the important low-energy
theorems of refs. [16, 19, 20]. Here (section I1.) we want to present the model in
more detail. We shall see that the part of the Lagrangian that describes the effective
interaction between a scalar glueball and a pair of pseudoscalar Goldstone mesons
is predicted if one specifies the mass of the scalar glueball. The model will be shown
to be in a reasonable agreement with the glueball assignment for the g, (1240) [7]
scalar meson. In this way it will be explicitly demonstrated that the coupling of the
scalar glueball to pseudoscalar Goldstone bosons is only due to a chiral-symmetry -
breaking quark-mass term in QCD Lagrangian, i. e. in the SU(3) x SU(3) chiral
symmetry limit the glueball does not decay to lighter pseudoscalars. In the case of
an exact SU(2) X SU(2) symmetry this glueball does not decay to pions while in the
real -world the width of such a decay is proportional to m® and is strongly
suppressed. Thus, we call this coupling the SU(2) X SU(2) rule. We shall also show
that the SU(2) x SU(2) coupling rule explains the existing experimental data for
decays of a tensor glueball candidate ® (1700) intro pseudoscalar pairs (section
III). In section IV some conclusions are drawn.

H. AN EFFECTIVE LAGRANGIAN FOR A HYPOTHETICAL
SCALAR GLUEBALL AND PSEUDOSCALAR GOLDSTONE MESONS

Let us begin our considerations by assuming that the low-energy dynamics of the
octet of the pseudoscalar Goldstone mesons is described by the following effective
Lagrangian (for further references see, e. g. [21])

< nm Tr [0.U)(E*U*)] + Lss, (1a)
where

Fss = —Tr [M(U + U")). (1b)
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Here the elements of the 3 x 3 field-matrix U(x) form the (3,3) representation of

the chiral SU(3) x SU(3) group, i. €. under chiral transformations UJ (x) transforms
as follows

U - AUB-, )

where A and B are unitary matrices of transformations. The matrix M in eq. (1b)is
a real diagonal one and is proportional to the mass matrix of light quarks. So, the
explicit breaking of chiral invariance due to the quark masses is provided by the %,
term (eq. (1b)) representing the genuine (3,3) + (3,3) model [22). In the , current
algebra® Lagrangian (1) the matrix U (x) satisfies the constraint [21]

Ux) U(x)=f2 (3)
and can be parametrized as
Ux)=f. exp Am M Fﬂa@bv “4)

where f, is the pion decay constant (f==93MeV), ¢!s(i=1,..., 8) are fields of
the octet of the pseudoscalar Goldstone mesons and the 1’ s are the Gell-Mann A
matrices normalized to Tr (Ad;) =28,. The Lagrangian (1) combined with eq. 4)
completely reproduces current algebra results for the system of pseudoscalar
Goldstone mesons. We mention here that we neglect the pseudoscalar (non-Gold-
stone boson) singlet field (and, correspondingly, a term in eq. (1) that solves the
U(1) — problem) since such a neglect is not essential in what follows provided the
scalar glueball is light and cannot decay into the 5y’ nor n'n’ systems.

An interesting and important result coming from eqs. (1) and (3) (or (4)) is the
trace of the “improved” emergy-momentum tensor 6., [23} which has the
following form .

(82): = =3 Tr [BU)EU")] -4 %, 5)

where index “1” labels the correspondence to eq. (1). To deduce eq. (5), it is useful
to introduce the scalar u} s and pseudoscalar vis (j=0, 1, ..., 8) fields by the
relations

w=1Tr [L(U+UY),
) ©)
Y; HM Tr [A(U - UY)].
Then Lagrangian (1) can be rewritten in the form
u, 8
= |N| Mc Mmtt.,vu + Amt.c..vuu_ =+ &MB . A\Nv
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Now let us assume that the fields of u's and v's (and consequently the field-matrix
U) have dimensions (conformal weights) equal to the number d, i. e. under dilata-
tion transformations Xx—ox (9>0 obeing an arbitrary number) one gets
U(x)—0™"U(x) and U*(x)-»o™U*(x). It is an €asy exercise to obtain the
“improved” energy-momentum tensor [23] from eq. (7). We get

O =3, [G.u)(3.) + (B,0)(0.00)] - g2+

) . ®)
+w [9.,8%3, ~3,3,] ..Me (uf+vd).
The trace of the ©,, reads (after the use of equations of motion)
8
Oi=(d-1) Mw [But)* + (B.v )] + (d ~ ) s, (9a)
or, in a more compact form (using egs. (6))
d-1
Q= 2 Tr [(3.U)@*U*)] + (d - 4) s . (9b)

U.:n to condition (3) the dimension (conformal weight) d =0 [24] and thus eq. (9b)
gives eq. (5). .

On the other hand, in QCD the result for the trace of the energy-momentum
tensor is given as [18]

(8f)oco =58 Fopom_ 1.1, (g)) 55 (10)

where F&'s (a=1, ..., 8) are gluon-field strength tensors, B(g) is the Cal-
lan-Symanzik function and Y=(g) is the mass anomalous dimension. The term

LE(x) = — M MaGi(x)q(x)(m/,s are quark masses, g:(x)'s are quark fields, i is

a given flavour) represents the nEBT@EEQQ-GRmE;W term in the QCD
Lagrangian.

In the pseudoscalar Goldstone meson sector described by eqs. (1) and (4) the
relation (10) is effectively represented by eq. (5). However, because of different
dimensions (conformal weights) of the terms % and £95° in egs. (5) and (10)
chiral noninvariant pieces of these equations are formally different (a naive
comparison gives the unacceptable result ¥m(g) =3). Although such a difference is
allowed for effective Lagrangians, being guided by eq. (10) we want, nevertheless,
to enlarge eq. (1) in a way to include a scalar field in it. In fact, to follow closer eq.
(10), the improvement of the dimension of eq. (1b) is needed. This can be done by
assuming the existence of a dimensional, :m<o=75aoun=am=~ scalar field o(x)
(dimension d, = 1) which can be used to write the following symmetry-breaking
term
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Lo (x)= = [a(x)]* Tr [M(U(x) + U*(x))] (11)

instead of eq. (1b). In eq. (11) Y= is a parameter which will be specified later. We
note here that since ¢ is flavour-independent, it is singlet under chiral (i. e. in the
flavour space) transformations, and therefore Zss belongs again to the (3,3)+
(3,3) representation as required [22]. We also remark that consistency with
spontaneous symmetry breaking (requiring VEV (0)o=0o#0) and correct be-
haviour of o(x) under dilatations (x — 0x, o(x) - 07 '0(x)) need the intro-
duction of the actual physical field ¢(x)({d)o=0) through the parametrization [25]

) (12)

o(x)= 0, exp A (x)
Jo
where 6(x) — 6(x)—0oln o when x — ox.

It should be emphasized here that there is no need to change the dimension of
the first, chirally invariant but dilatationally nonivariant term in eq. (1a) since just
this term gives a chirally symmetrical contribution to €q. (5) in agreement with the
QCD trace anomaly, eq. (10). Moreover, in the chiral symmetry limit it is this piece
of the trace of the enegry-momentum tensor (eq. (5)) that effectively represents
the low-energy theorem of refs. [19, 20]”

(PEOP()I(O2:10)/ =g, (13)
Lmit
where g>=2p,.p,=(p,+ p,)? is the invariant (mass)® of the pp system.
Thus, a minimal enlargement of the Lagrangian (1) including the o-field is
proposed to be of the following form

Lot = w@% + w Tr [BLU)@*U*)] ~ V() + Lia (14)

where U, o and Z45 are given by egs. (4), ( 12), and (11), respectively, and V(o)is
a chirally invariant potential and as such dependent only on the flavour-independ-
ent o-field. The Lagrangian (14) gives

(09 = !W Tr[(3.U)(3"U*)] + 4 V(o) -
(15)

o dV(o)

We see already a formal consistency between egs. (10) and (15) and we also expect

') As usual, we shall calculate in tree approximation, and states will be normalized covariantly :
(p/p") =(27)20,6(p ~ p).
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that the parameter Y= 1S approximately given by the perturbation theory, i. e.
Y= Ym(g{(u)), where K is some typical hadronic mass scale. We choose for
definiteness a,(u)=0.7 at #=0.2GeV [26] and then Ym=20,/7+ O(a?) =
0.5+ O(a?). To completely specify the Lagrangian (14) it still remains to find the
potential V(o). To do this, let us expand V(o) in the right field 5-

V(6) = V(ao) + Amw\voq + wﬁw\v@% +o (16)

Using parametrizations (4) and (12) in eq. (14), and eliminating the term linear in
0 from (14) by requiring

dé [ [¢1))

Aﬁ\v HW ww? 2mi+m2)p2, (17)

we obtain the Lagrangian ( 14) in a correct form. From this Lagrangian one easily
finds, e. g., the o-particle (mass)?

U (18)

and the interaction term
Lor(x)= 12 T2 6(x) M migi(x), (19)
where mis (i=1, ..., 8) are masses of the octet of the pseudoscalar mesons. It is

seen from egs. (10), (15), and (16) that the chirally invariant part of the trace
anomaly is effectively given as

E(xy= nm% Fi(x) = Ho+ H,6(x) + Hy*(x) +
(20)

+0(5%) +W Tr[(3,U)@U*)),
where

Ho= - mwwlv HVO — s_Ammv ~4V(ay),

da/e

I d
Hi= SA &M\VQ - A%\vc. @1)
=3T3, -5,
T2 N\a& ), " NagE), et
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To find the coefficients H (i=1,2,..) one can use successively the following
low-energy theorems [16] valid in the chiral-symmetry limit

if dx (O|T(H(x)H(0))|0) = 4 Ho[1+ O(m,)],
i [ dx J dy( [T(H(x)H(y)H(0))[0) = 16 HL{1 + O(m,)] etc.
Combining equation (20) and the first of egs. (22) we get
Hi=4miHo[1+ O(m,)]. (23)

Analogously, egs. (22) can be used to calculate all the coefficients H, in terms of,
€. 8., m; and H,. Moreover, from eqs. (17), (18), (21) and (23) one finds

maoi=4 Ho[l + O(m,)]. 24)

The value of H, is approximately given as follows (for the SU(3). — colour group
and for three light flavours, Ne=3):

(22)

mou x,AmNva va., n mAw. HVO +0(a?), )

9 . .. ..
s&mB AM mnv _mEommEEmnm_zoc-oo:Qnumﬁo term parametrizing nonperturba-
0

tive effects of QCD [26]. Shifman, Veinstein, and Zakharov were the first
[26] to estimate this condensate by analysing the QCD sum rules for charmonium.
They obtained

Am ﬁv no,SNo&x. (26)
/e

However, this value has not yet been strictly determined, and a larger value than
given in ‘eq. (26) is called for (may be by a factor 2+3) [27]. Thus, the only
arbitrary parameter of our model (eq. (14)) remains the mass m, of the scalar
o-particle. Since the o-particle dominates the scalar gluonic current (see egs. (20),
(22—24)), then this particle must be identified with a hypothetical scalar glueball.
Such an identification is supported also by a large N.-dynamics (N, is a number of

" colours). For example, from egs. (20) and (23) there is (as it must be for a true

glueball, see ref. [16]) (0] H(0)| 0) =2m,VH,~ N, in the large N, limit because, as
usual, m, ~N? and from eq. (25) H, ~ N2,

It is worth to note here that just the constructed Lagrangian (14) gives
(combining eqs. ( 15—19) a generalized version (for nonzero quark masses) of eq.
(13), namely,

m?
2 2
mi—gq

Awg.vm.vng:@nv:_cv =2pi.p2+ (3~ y.)m} + {1+ yn)m} (27)
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which for a higher o-particle mass (m3>q*=4 m}) behaves as
(P(p)P(p2)|(81):4]0) = g> + 2m? (28)

in full accordance with such a generalization of the low-energy theorem in ref. [20].
Taking eqgs. (27) and (28) to be valid for all eight pseudoscalar mesons (i.e.,
PP=n*g", K7K~, 0, etc), we easily see that the present model suggests the
bound m,>2m,=1.1 GeV for the mass of the scalar glueball,

Uom:mnm the decay amplitude T..; as

(fISli) =8, + i(27)* 6 (p, —p) Ty, (29)

where, as usual, S=T exp (i [ dx%..(x)), then using the interaction term ( 19) and
combining it with egs. (24) and (25) one easily obtains the following formulae for
the decay widths of o into pseudoscalar pairs

4m}
.Njal&nfal = NNJQIwHoao" >§MAH - ~‘=~ v s

SQ
2
P =L, i >SMAM _ wau.o v :uu (30)
SQ
2\ 1/2
~Jql._-_ = W;&SuAH - A“Mﬁu:v >
where the overall factor A is
2
>nA L%v M ) (31)
maAlh m,“v
2 0

The scalar glueball candidate g: (1240) [7] satisfies the mass bound m, =
1.24 GeV>1.1 GeV and still is light enough to have dominant hadronic decays
into pseudoscalar pairs only. Then to a good accuracy the total width I, is given as

NJSWNJ?WNJQWLS+~1n1e_2~+~1n123 Aqu
Labelling x. =TI, , /T os Xk =TI, .xx/I, and putting m,=m, =1.24 GeV we
obtain (x,x)"? = 0.06 from eqs. (30) and (32); and for Ym=0.5, AW mﬁveﬂﬁ =

0.012 GeV* (see eq. (26)) we find I, =270 MeV while for (a.F?)o=2{a,F?)osvz
one gets I, =135 MeV. We see that the agreement with experimental values [7]
(xxxx)exs = 0.04 and (T,,).., = (140 %+ 10) MeV is reasonable. Because of the lack of
knowledge of precise values of the phenomenological parameters H, and Yo it 15
difficult to say whether the consistency with experiment requires definitely a higher
value of AW wuv » although this seems to be the case when using reasonable
]

approximations given by egs. (23—25) and y../3 < 1. We note also here Emn the
decay pattern of another announced scalar glueball candidate G ( 1590) [10] is not
consistent with egs. (30).
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L. THE COUPLING OF A H.HZmON GLUEBALL
TO PSEUDOSCALAR MESONS

In the previous section we have explicitly illustrated (see egs. (14), ( 19) and (30)
the SU(2) xSU(2) rule for the coupling of a scalar glueball to pseudoscalar
mesons. Here we want to formulate this rule and to confront it with experiment
also for the coupling of the tensor glueball candidate © (1700) and pseudoscalar
mesons (for the original suggestion, see [28)).

So, let us label the field of the tensor glueball candidate @ (1700) as @,,(x),
where

*@u =0, 9°Pn =0 (33)

and @, is symmetrical in U, v (see, e. g. [29]). Since ¢, is flavour-blind, it is singlet
under chiral (i. e., in the flavour space) transformations, and then besides U (eqs.
(2) and (4)) eq. (2) is satisfied by the following derivative terms, for example,
9" (3,3.U), (3, U)(B.UY)U, e*UBU*)(3,U), 9*U(3,3,U*)U, etc. thus,
a linear combination of them can be used in eq. (1b)instead of U, However, not all
these derivative terms are nontrivial and independent, because due to eq. (33) we
have, e. g.

3.(¢*"3.U) = ¢*(3,3,U), (34a)
3ule"UR.U")U]= p*(3,U)a.U*)U +

(34b)
+9"UG3,.U)U + ¢*U(3.U)(3,U).

The L. h. s. of these relations are full derivatives and as such do not give nontrivial
contributions to the Lagrangian ; thus all the three terms on ther. h. s. of eq. (34b)
are not independent either. As a result (after the use of parametrization (4)), we
choose

Lore ()= 919 () 3, mi@.0() 6. (x)), (33)

which is then the only nontrivial and independent Lagrangian term coming from
the general effective quark-mass term and describing an interaction between
© (1700) and pseudoscalar pair particles P, P(PP = *n, KK, etc.). Here g, is
some unknown constant and the m's are masses of the pseudoscalar mesons. Using
egs. (29) and (35) it is e€asy to obtain explicitly the following partial decay widths
[28]

4m2\ 52
Tontn-=2Ig_  00= D:A ;n%v ,
Mme

&SM 52
Feg_x+x-= ﬁmlaamoﬂ QSMAH ) V

Mg Au@v
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1 4m2\52
H.ml._..HMQSNAH - Swav
where an unknown overall constant C depends only on g, and me. We see from
egs. (36) that the decay of @ (1700) into pions is naturally suppressed due to
smaliness of the pion mass. Eqs. (36) give (for me =1.7 GeV):

Fo.nx / To .z =0.01, ,Anxwmaaonﬁ <1) (37)
and
~J®(l=_ \NJQILA—N = Qwa

while the experiment gives

B(J/¥ — y©)B(® — mm)=(3.8+1.6)x 10,
B(J/¥ — y0) B(@ — K'K7)=4.5+0.6+0.9)x 10,

where the data are from refs. [6, 14, 31}

We see that the experimental errors allow for the prediction given by egs. (37).
However, it is interesting to note here that the experimental data are in a better
agreement with eqs. (30) than with eqs. (36) and (37) suggesting thus a possibility
that for the © (1700) the spin-parity J* can be O** instead of 2**.

IV. CONCLUSION

The Lagrangian (14) has been constructed as a minimal enlargement of eq. (1) so
as to lead to egs. (15) and (20). These equations effectively represent the important
low-energy theorems of refs. [19—20] thus justifying the initial Lagrangian (14).
The Lagrangian (14) contains besides the pseudoscalar octet fields the only scalar
glueball field o, i. e., other possible quarkonium scalar mesons and their eventual
mixing with the o-glueball are neglected. However, this does not mean that there is
no mixing between gluon and quark degrees of freedom. In fact, the present model
realizes a strong mixing of this type, as one can see from eq. (20), having on the r.
h. s. large and unsuppressed pseudoscalar meson (i. e. quark) contributions as well.
It is just this type of mixing [16] that explicitly gives not only low-energy theorems
of refs. [19—20] but is also consistent with the SU(2) x SU(2) coupling rule. This
rule (see egs. (19), (30), (35) and (36)) is in a reasonable agreement with the
experimental data on g, (1240) [7] and @ (1700) [6, 14, 31] glueball candidates.
However, any definite conclusions need further experimental work concerning
these states and their properties.
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It si also worth to note that in ref. [30] the coupling of the type of eq. (19)
(between a scalar glueball and mesons) has been independently mentioned.

I am grateful to Prof. P. N. Bogolubov for his comments and to Prof. V. A.
Meshcheryakov for his interest in and support of the present work.
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