The specific heat of thulium was measured by a number of authors [3, 4, 5], but the results differ by more than 20%. This discrepancy has not been fully explained yet. It appears that the difference may be caused by the experimental procedure, but in certain cases it is possible that the experimental results differ due to the presence of impurities in the samples.

The specific heat of thulium was measured by a number of authors [3, 4, 5], but the results differ by more than 20%. This discrepancy has not been fully explained yet. It appears that the difference may be caused by the experimental procedure, but in certain cases it is possible that the experimental results differ due to the presence of impurities in the samples.

Introduction

different samples or by thermal cycling. Due to this it is possible that the specific heat of thulium was measured by a number of authors [3, 4, 5], but the results differ by more than 20%. This discrepancy has not been fully explained yet. It appears that the difference may be caused by the experimental procedure, but in certain cases it is possible that the experimental results differ due to the presence of impurities in the samples.
For measurements without the magnetic field B and by potentiometer measured values were plotted by the potential line in the range from 0 to 10 K where these holds that $\bar{\Theta}(0)=const.$ the magnetic field at the time of free falls. The magnetic field is changed by 30% due to the influence of the applied field.

The coefficient has changed from 80% to 100%.

\[T \]
\[C_m \]
\[C \]

\[C_m = B \cdot T \]

\[C = C_m - C - C_m \]

\[C = 2 \cdot 43 \cdot T \]

\[C = 0 \]

\[C = 10 \cdot 17 \cdot 3.1 \cdot 2.43 \cdot 4 \cdot 3.1 \cdot 1.7 \]

\[C = 4 \]

\[C = 14 \cdot 1 + 0.24 \cdot 1 \cdot 1.8 + 3 \cdot 2.43 \cdot 4 \]

\[C = 10 \cdot 17 \cdot 3.1 \cdot 2.43 \cdot 4 \cdot 3.1 \cdot 1.7 \]

\[C = 4 \]

\[C = 14 \cdot 1 + 0.24 \cdot 1 \cdot 1.8 + 3 \cdot 2.43 \cdot 4 \]

\[C = 10 \cdot 17 \cdot 3.1 \cdot 2.43 \cdot 4 \cdot 3.1 \cdot 1.7 \]

\[C = 4 \]

\[C = 14 \cdot 1 + 0.24 \cdot 1 \cdot 1.8 + 3 \cdot 2.43 \cdot 4 \]

\[C = 10 \cdot 17 \cdot 3.1 \cdot 2.43 \cdot 4 \cdot 3.1 \cdot 1.7 \]

\[C = 4 \]

\[C = 14 \cdot 1 + 0.24 \cdot 1 \cdot 1.8 + 3 \cdot 2.43 \cdot 4 \]

\[C = 10 \cdot 17 \cdot 3.1 \cdot 2.43 \cdot 4 \cdot 3.1 \cdot 1.7 \]

\[C = 4 \]

\[C = 14 \cdot 1 + 0.24 \cdot 1 \cdot 1.8 + 3 \cdot 2.43 \cdot 4 \]

\[C = 10 \cdot 17 \cdot 3.1 \cdot 2.43 \cdot 4 \cdot 3.1 \cdot 1.7 \]

\[C = 4 \]

\[C = 14 \cdot 1 + 0.24 \cdot 1 \cdot 1.8 + 3 \cdot 2.43 \cdot 4 \]

\[C = 10 \cdot 17 \cdot 3.1 \cdot 2.43 \cdot 4 \cdot 3.1 \cdot 1.7 \]

\[C = 4 \]
REFERENCES