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MONTE CARLO SIMULATION OF THE MOTION
OF ELECTRONS IN SF, IN UNIFORM ELECTRIC
FIELDS")

1. DRKIMAL?), D. TRUNEC?), Brno

The motion of electrons in SFe in uniform electric fields is simulated using
a Monte-Carlo technique for the range of reduced electric fields 7S<E/p=-
135 Vm™* Pa~". Electrons distribution functions and drift velocity have been obtained.

CUMYJHPOBAHHUE JBHXEHHUSA 3JEKTPOHOB B NOMEHIEHHOM B OJHOPOJAHOE
3JEKTPHYECKOE IOJIE OBPA3IE SF, NPH [IOMOMY METOJA MOHTE-KAPJIO

B paboTe NpHBEReHb! Pe3yALTATHI CHMYJMPOBAHHS JBUXCHHA B nNoMeUieHHOM
B ONHOpOJHOE 3MEeKTpH4YecKoe nonxe obpasue SF« npu noMoiuy Merosa MouTe-Kapno
B HHTEpBaje MPHBEICHHBIX HaNPAXKEHHOCTER  INEKTPHYECKOTO 107 IS<E/p=-
135 (Bm™'Ma™’). TosyveH sBHbIA By (PYHKUMH pachpefcneHHd 37E€KTPOHOB M HX
npesipoBas CKOPOCTD.

I. INTRODUCTION

The current extensive use of SFe as an insulating medium in high voltage
equipment has prompted efforts towards correlating the observed discharge
phenomena with the basic processes. The measured values of Townsend’s first
ionization coefficient a/p and attachment coefficient 1/p have been reported in
literature. Theoretical work to predict the transport and ionizing properties of
electrons using the measured collision cross section is based on a numerical analysis
of the Boltzmann equation in which various mechanisms by which electrons lose
energy are included. The numerical solution of the Boltzmann equation yields the
electron energy distribution with the electric field E and the gas number density N
as parameters [1]. Appropriate integration of the energy distribution function
yields the transport and ionizing properties of the electron swarm {2, 31

') Contribution presented at the 5th Symposium on Elementary Processes and Chemical Reactions in
Low Temperature Plasma, STIAVNICKE BANE, May 21—125, 1984.
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The Monte-Carlo simulation of the electron drift in a uniform electric field has
the advantage that the motion of the electron at all stages during its passage in the
discharge is traced. Several authors have used Monte-Carlo techniques in a number
of gases but only Dincer used this method in SF, [4].
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Fig. 1. The block scheme of the model.

{L. COLLISION MODEL AND MECHANICS

In a spherical coordinate system a background gas of SFs molecules with
a number density of N =3.29 X 10" cm™* which corresponds to a gas pressure of
1 Torr at 20 °C is considered. The ionizing and transport properties are assumed to
be independent of the gas number density. The applied electric field E is
antiparallel to the z axis. N electrons with a cosine distribution of an energy in the
interval 0.1—8 eV are injected from the origin of the coordinate system assuming
a cosine distribution for the angle of entry with respect to the z axis. At t=0 an
electron follows a free flight time with a randomly selected angle of entry
depending on the distribution. The block scheme of our model is in Fig. 1.

Dincer [4] adopted a mean collision time approach in which the total time
between collisions is divided into 40 intervals for the energy range 0sws=3eV
and for W>3 eV 10 intervals are chosen. The mean collision time Ty of an
electron is inversely dependent upon the total collision cross section Qr, the gas
number density N and the electron velocity |v] and accordingly
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Tae = (NQrv) ™" (1)
The probability of collision in the time step AT is
A
P=1-exp A:ﬂﬂ )

and the collision is simulated by comparing P with R, at the end of each step where
R, is a random number uniformly distributed between 0 and 1.

Our preliminary calculations showed that this model collapsed. We thing that the
manner of the simulation of the collision time is not sufficiently exact. Therefore we
have calculated the collision time T from the equation

C((Tu)dr_
_‘a v, (0] In R 3)
here

I[v.()]=(NQr()™ 4)

and R is again a random number uniformly distributed between 0 and 1.

For the coordinate system selected the position and energy of an electron in the
time of the collision step T undergo the following variation for an initial velocity vo
and kinetic energy

W = mvi/2

Az =vo, T +aT?/2 a=¢eE/m )
Ax =vo.T AW =eEAz

Ay =v,,T

in which E is the electric field, e/m the charge to mass ratio of electron, Az the
distance travelled along the z direction (E), Ax and Ay the position components
with respect to the x and y axis, and AW the energy gain in the interval.

Vor, Vo, and vo, are the components of the initial velocity parallel to the
respective axes and are given by

Voz = Vo COS O
Vox = Vo Sin @ cos P (6)

Voy = Vp sin O sin P

in which © and @ are the polar and azimuthal angles, respectively. If a collision
occurs, @ is calculated according to cos © = 2R, — 1 assuming that the scattering is
isotropic in the laboratory coordinate system and R, is again a random number
uniformly distributed between 0 and 1.
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The total collision cross section is defined as

Qr = Qu+ Qu+ Qu + Qun + Q., )

where Q. is the elastic differential cross section which is replaced by the
momentum transfer collision cross section Q.. in the simulated collision, Q,, is the
attachment cross section, Q., is the total electronic excitation cross section, Q.. is
the total ionization cross section, and Q, is the vibrational collision cross section.

[Qu/Qr [Qu/ QR /Q1] Qun / 1| Q./Qr
I.I[ " Fig. 2. Scheme for describing the nature of col-
4 lision.

The type of collision is determined according to Fig. 2, where the position of the
arrow indicates the nature of the collision. Q./Qr gives the probability of the
coming process. Hence after the event of a collision, if the probabilities of inelastic
collisions fail, the collision is deemed to be elastic and the loss of energy in the
collision is 2m/M where m and M are the masses of electron and a SFs molecule,
respectively.

If the electron is attached, it is lost in the swarm and its subsequent fate is
ignored. For other inelastic processes the appropriate threshold energy of the
process is subtracted from the electron energy. We have used the collision cross
section from [3], [4]. Figure 3 summarizes the various cross sections.
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Fig. 3. Collision cross section in SFs.
A. Momentum transfer cross section

According to [4] we have adopted a cross section of 1.2 x 107* ¢cm? in the energy
interval 0.5—75 eV.
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B. Electronic excitation cross section

The excitation cross section is given by

0..=095%107' s\mx w 8 exp Aamwsv naN @

Threshold energy is 9.8 eV.

C. Attachment collision cross section

In the present simulation there were used the relationships

w
-y ~14 _ 2
Q. (SF3=5.2x10""exp A o.o:qv cm

0= W=0.045¢eV

W 9

=4.5x107" exp Alolmmv cm’

0.045sW=<2eV

Q.(SF5)=2.94x 1071 W cm?
0.068<W=04eV
(10)
=7.047 X 107" W*** cm®
0.4<W<093eV
The total Qa, is then

Qa: = Qu (SF2) + Qu(SF5). an

D. Ionization collision cross section

The ionization cross section of Rapp et al. [5] is used with an ionization
threshold energy of 15.8.eV.

1. RESULTS

Our computations have been carried out with No=40—60 electrons. Each
electron has collided 2000 times. According to Nanbu [9] the relative error of the
computed parameters is proportional to 1/(Nok), k is number of collisions.
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The energy distribution normalized according to ._‘ F(W)dW =1 is shown in
(]

Fig. 4. The full lines show the Maxwellian distribution at the same mean energy.
The drift velocity was computed by

= AZM wv\zc 12)

i=1

where d; is the average distance traversed in the field direction; & is the time of
observation of the i-electron. The calculated drift velocities are shown in Fig. 5 and
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Fig. 4. Energy distributions for E/p =90 Wm™' Pa”". Full curve — Maxweilian at the same mean

energy.

compared with the measured values of Teich and Sangi [6], Naidu and Prasad
[7}, and the calculated values of No vak and Frechette [8] on the basis of the
Boitzmann equation, and the values of Dincer and Go vinda Raju on the basis
of the Monte-Carlo technique [4]. The agreement between the present result and
those referred to above is very good, particularly at higher E/p values.

4

Fig. 5. Drift velocities in SFs. Open circle

51r — Naidu and Prasad (experimental) [7], full
2 circle — Teich and Sangi (experimental) [6],
> L 1 L ! L broken line — Novak and Frechette [8], full
00 120 10 160 180 line— Dincer and Govinda Raju[4] and + is
E/p(075 Vi Pa') the present work.
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IV. CONCLUSIONS

Swarm parameters evaluated by the Monte-Carlo technique are in good agree-
ment with the experimental values. Energy distributions obtained by the simulation
indicate Maxwellian tail behaviour at corresponding mean energies.

REFERENCES

[1] Masek, K., Laska, L., Pefina, V., Krisa, J.: Acta Phys. Slov. 33 (1983), 145.

{2] Yoshizava, T.etal.: J. Phys. D 12 (1979), 1839.

(3] Kline, L. E. etal.: 1. Appl. Phys. 50 (1979), 6789.

[4] Dincer, M. S, Govinda Raju, G. R.: J. Appl. Phys. 54 (1983), 6311.

[5} Rapp, D. D, Englander—Golden, P.: J. Chem. Phys. 43 (1965), 1464.

[6] Teich, T., Sangi, B.: Proceedings of the Internat. Symp. on High Voltage Technology, Munich
1972.

{7] Naidu, M, Prasad, A.: J. Phys. D 5 (1972), 1090.

[8] Novak, J., Frechette, M.: J. Phys. D 15 (1982), L 105.

{9] Nanbu, K.: J. Phys. Soc. Japan 49 (1980), 2042.

Received June 8th, 1984
Revised version received September 6th, 1984

173



