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HIGHER ORDER SOLUTION OF BOLTZMANN’S
EQUATION FOR ELECTRONS IN AN ELECTRIC FIELD
WITH ISOTROPIC SCATTERING IN ELASTIC
AND EXCITING COLLISIONS?

R. WINKLER?, Greifswald, G. L. BRAGLIA®, Parma, A. HESS?, J. WILHELM?, Greifswaid

The analysis of the mathematical structure of the hierarchy resulting for the coeffi-
cients of a of 2 /-term expansion of the electron velocity distribution function in
Legendre polynomials shows that its general solution at low as well as high energies
contains { singular and / non-singular fundamental solutions. A special technique is

developed to isolate al non-singular contributions of the general solution and to
construct the physically relevant solution of Boltzmann’s equation in an arbitrary even
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L. INTRODUCTION

By solving the electron Boltzmann equation a bridge has been buiit between the
data of elementary processes and the macroscopic properties of the plasma such as
transport and rate coefficients of the electrons. But the conclusion from macro-

of the velocity distribution function, a higher order than the 2-term Lorentz
approximation. Several attempts have been undertaken to improve the level of

a plasma in an electric field E = Ee, and with elastic and exciting electron-neutral
particle collisions, a technique which is a logically consequent generalization of the
conventional method that solves this equation in a two-term approximation (TTA)
by backward integration. Starting from the expansion

2i-1

F()= 3, F(0) . (wetv) (1)

of the distribution function f(v) in Legendre polynomials P,, we obtain from the
homogeneous and stationary Boltzmann equation the hierarchy
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for the normalized expansion coefficients
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where U=mv*/2 and n is the electron concentration. Furthermore
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MM\NV« icvnsw\m\v, ﬁSnMiS 6=2m/M, (4)

p(U)=

where Q< and Qf is the total cross section for elastic collisions and for the k-th
exciting collision process with the threshold Uy, respectively. With this form of the

\ﬁ_ UvfU)dU =1, )

I. GENERAL SOLUTION AND SOLUTION TECHNIQUE

Assuming appropriate power series for Q'(U) at small U and for Qi (U) at
energies just above the threshold U « and considering for small U the inscattering
terms f(U + Up) formally as an inhomogeneity of the linear system of ordinary
differential equations, it follows that (2) constitutes a weakly singular differentia]
equation system for smail energies with the singular point U =0. Using, however,
for Q< and Qg asymptotic series representations in U for large energies, (2)
becomes a strongly singular differential equation system with the singular point at
U= (3).

Because of a different character of the singularities of system (2) separate
considerations of the structure of the general solution of the hierarchy are
necessary in the region of small and large energies respectively. As a result it was
found that the general solution at small as well as that at large energies contains [
non-singular (i.e. normalizable) and ! singular fundamental solutions. The desired,
Le. physically relevant solution has to be sought within the non-singular part of the
general solution (NSPGS) both at low and large energies, with both NSPGS’s
involving a total of 2/ free parameters. Therefore the physically relevant solution
can be uniquely determined (i) by construction of the NSPGS at low as well as large
energies, (ii) by continuous connection of these at an appropriate connection point
U. and (iii) by additional normalization according to (5).

On the basis of these findings a new technique was developed to isolate
numerically all contributions to both NSPGS’s starting firstly from a sufficiently
large energy U.. (i.e. from a numerical approximation of the upper singular point)
down to the connection point U, and secondly from the singular point U =0 up to
U. to find thus both NSPGS’s. This technique leads to the distribution function f in
the even order approximation (21) via I-fold backward and 21-fold forward
integration of the hierarchy in order to construet both NSPGS’s from the singular

points to U..

90

Two particular aspects of the numerical technique should still be mentioned.
Firstly the | non-singular fundamental solutions at large energies show, with
increasing order 21, a widely differing exponential behaviour. To preserve despite
of this property the linear independence, a special procedure must be applied to
enforce repeatedly the linear independence of the { non-singular solutions during
the backward integration [4]. Secondly, in order to find numerically all (21)
independent contributions to the NSPGS at small energies an analytical isolation of
the independent contributions by appropriate power series representations of the
fundamental solutions and of the contributions to the particular solution near the
singular point is necessary and was carried out in [4].

L. RESULTS AND DISCUSSION

A model plasma is considered with atoms of a mass M of four atomic units and
with energy independent cross sections Q* and Q* for elastic collisions and for
only one excitation process but with a linear increase of the latter from 0 to its final
constant value Q* over a small energy region U <U<U*+02eV. To demons-
trate the potential of the new technique, we selected conditions which produce
a large anisotropy, i.e. we chose the values Q“=Q*=6x10"cm? and U= =
1 eV. Using these atomic data for the model, the solution of the hierarchy (2) was
performed with increasing order 21 up to the converged solution for different field
strength values E/N (N denoting the neutral particle concentration). Fig. 1 shows
for E/N=50Td (1 Td=10"" Vem?) as full and dashed curves the first four
converged coefficients f,(U) of the Legendre polynomial expansion obtained in the
approximation for 2/ =8 as dependent on the energy. As can be seen for energies
somewhat above the threshold, the first contributions f,, f,, f; to the anisotropic
part of the distribution function shown in this figure have larger moduli than the
isotropic part f,. This distinctly reflects the large anisotropy of the velocity
distribution function under these conditions. To assess the accuracy of this new
technique very accurate Monte Carlo simulations [5] were performed in addition.
The results of these simulations obtained for the same first 4 coefficients are in very
good agreement with the kinetic results and thus confirm the accuracy of the new
method. To illustrate the insuficient description of this physical situation by the
conventional TTA, Fig..2 shows the ratio of the converged (2 = 8) first and second
coefficient f, and f, respectively to the corresponding function resulting from the
conventional TTA. It is obvious that there are large changes of these functions
from TTA to the 8-term approximation which increase to about one order of
magnitude at large energies. Because the macroscopic quantities are to be
calculated via f, and f,, this result shows the importance of an accurate technique
for solving the Boltzmann equation under such conditions, in particular for the
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Fig. 1. The converged expansion coefficients fo,  Fig. 2. The ratio of 8-term to 2-term values of fo
fi, f2 and fi for the model with E/N=50Td in and f, for E/N =50 Td.
comparison with Monte Carlo results,

N“ =8
2f=
E/N=150T¢

Fig. 3. The change of the isotropic distribution
0 2 4 6 8 10 1 from 2- to 8-term approximation for different
——Ulev] E/N.

determination of collision frequencies for additional collision processes with high
thresholds, which, however, are not considered here. Fig. 3 compares the 2-term
and 8-term results for fo at widely differing E/N-values. As expected, the change
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Table 1

Macroscopic quantities with increasing order 2{ in comparison with Monte Carlo results

E/N=50Td E/N=100Td

21 U w V=/IN U w v /N
2 7.458 1.760 8.793 12.47 2.307 23.06

4 7.233 1.641 8.198 12.32 2.173 21.71

6 7.216 1.640 8.195 12.29 2.167 21.66

8 7.217 1.640 8.194 12.29 2.167 21.66

MC 7.217 1.639 8.188 12.28 2.165 21.63

Finally, to demonstrate the changes of some macroscopic quantities with
increasing approximation order, leading ultimately to their converged values,
Table 1 presents the mean values

U= \ UM UMU, W= —(173) (2/m)” % " UR(U)D,
_ ©)
7N = (2/m)" % UQ=(U) f(U)U

of the energy (in 10~ ¢V units), of the drift velocity (107 cms™') and the excitation
frequency (107° cm®s™") of the electrons for two E/N values, all of which are
averaged over the low energy region. The last row gives the corresponding
quantities from Monte Carlo simulations. As can be clearly seen, it is possible to
achieve the converged macroscopic quantities with an accuracy of about four
significant figures by means of a 6- or 8-term approximation and these converged
values are in very good agreement with Monte Carlo results.
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