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ELECTRON ENERGY DISTRIBUTION FUNCTION
IN THE COLLISIONAL-RADIATIVE MODEL
OF ARGON PLASMAY

J. VLCEK?, Plzen

A numerical solution method for the Boltzmann equation has been developed to
obtain the electron energy distribution function in nonequilibrium argon plasma charac-
terized by a set of measurable quantities (T,, T,, T:, n and ni) which are in accordance
with the usual input parameters of the collisional-radiative models.

®YHKIHA PACIIPEAEIEHUS SHEPTHH SIEKTPOHOB
B YIAPHO-PAXMALIMOHHON MOJEIY APTOHHOM ILTA3ZMBI

B pabore onucan merog uucnenmnoro pelieHust ypaBHeuust Bonbumana, KoTopbIit
PA3BHT C LebI0 NOnyYeHUs PYHKUMH pacnpeneneHns JHEPTHH NEKTPOHOB B HEpaB-
HOBECHOM aproHHo# naasme, XapaKTepH3yeMod Ha6opOM HIMEPHMbBIX BEJTHYHH (T., T.,
T:, ne v m). 3Tu BeNMUHHBI COBNAAAIOT ¢ OBBIYHBIMH BXO[IHBIMH NapaMeTpamMHu yiap-
HO-paiMauMOHHON MOJIENH MAA3MBI.

L. INTRODUCTION

One of the important assumptions made in almost all extensive studies based on
the realistic collisional-radiative (CR) models (see, e. g., Ref. [1—4]) is the use of
the Maxwellian electron energy distribution function.

However, it has been shown by many authors that this assumption is unjustified
for a wide range of physically interesting conditions in various gases.

Distribution functions in argon plasma have been calculated, e.g., by Winkler
[5], Judd [6], Smits and Prins [7], Morgan and Vriens [8] and Ferreira and
Ricard [9]. .

Our objective was to develop a numerical method allowing the solution of the
Boltzmann equation for the electron energy distribution function under various
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nonequilibrium conditions in argon plasma characterized by a set of measurable
quantities, such as the electron temperature T, the atom temperature T,, the ion
temperature T;, the electron number density n, and the ground state atom
population n,, which are in accordance with the usual input parameters of the rate
equations of the CR models.

A substantial feature of the method used is a consistent calculation of the electric
field strength E corresponding to the chosen set of the input parameters.

Il. THE BOLTZMANN EQUATION

Assuming the electron velocity distribution to be slightly anisotropic in velocity
space, the only component of the electron energy distribution function to appear in
the rate coefficients of the CR model is the isotropic one f(u) where u=¢/kT, (e
is the electron energy and k is the Boltzmann constant).

For a stationary and homogeneous monoatomic gas plasma f(u) is given by the
equation [10—13]:
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respectively, n, and T, are their number density and temperature respectively.
Q% (u) is the electron-heavy particle momentum transfer cross section. In the case
of atoms Q(u) was Aapproximated {13] by a formula giving a reasonable fit to the
experimental data of Massey and Burhop [14]. For Q&”(u) there holds:
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where & is the vacuum permittivity. The encrgy averaged cross section for the
electron-electron scattering can be written as:

PMQA e’ VN_LH?S»CJ.
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The integral functions Ai(u) and A,(u) are defined by the relations:

>_A:vﬂwmﬁmsmmvua thzu;::vn: + :Sha\??:g ‘ (2)
and
As(u)=2a(2L)" [fw=fwyau. 3)

The basic equation ( 1) was linearized by using an approximation consisting in the
replacement of the function f(u) by the corresponding Maxwellian function fulu)
in expressions (2) and (3). This approach causes only slight inaccuracies in our
results for f(u) because the quantities A,(u) and A,(u) are weakly dependent on
the course of the function f(u), especially in its high-energy tail (see Ref. [7] and
[15]). Furthermore, according to Winkler [5], who calculated the distribution
function in argon plasmas without any approximations of the above mentioned
integrals, the deviations between the low-energy parts of the functions f(u) and
fu(u) tend rapidly to zero with a growing effect of the electron-electron scattering.

The operator Cv(u) includes generally all terms referring to various types of the
possible inelastic processes. Their influence on the distribution function is investi-
gated in Ref. [13].

This study proves that only the terms corresponding to the collisional excitations
from the ground state of the atom to the two lowest excited effective levels (n=2
and n =3) and the collisional ionization of the ground state need to be considered
under the usual conditions in equation (1). It should be noted that the effective
levels denoted byn=2andn= 3, each containing resonance and metastable states,
consist of P, and °P, levels and 'P, and 3Py levels, respectively,

Equation (1) can then be rewritten in the form:

i [HO Y 1 60 160 ] = b 10 @
where M(u)=0 for usu,,
and

M (u) = 013(u) + 01s(u) + oi(u) for u> uy,.

The formulas for the cross sections 0u(u), au(u) and a,(u) referring to the
processes mentioned above are taken from Ref. [4]; wi is the dimensionless
excitation energy of the level n =2.

The normalization condition for f(u) is expressed as:

NQAFHvShs:S:Sazn_. (5)
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HI. NUMERICAL SOLUTION

HL1. The elastic region

For u<u,; we obtain [13] the solution of equation [4] in the form -
f(u) = NI(u) (6)

where

=ofis o o] [ tr )

J(u)= an-%l czmMMWaL

and for the constant N it follows from condition (5):
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The value of the electric field strength E corresponding to the chosen set of input
parameters was determined numerically by means of the €quation defining the
electron temperature ;

3 B
a e =€
2
where € is the mean electron energy. This relation can be rewritten as:

\‘ u*?I(u)du
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The values of E and N are calculated in two different ways for all cases
investigated.

The first one is suitable when the high-energy tail of f(u) falls off very rapidly
with respect to fu(u). Then it follows that
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and
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integrals is used with the highest values of the ionization degree in which case
especially formula (8a) fails. For this reason the above relations were modified :
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HL.2. The inelastic region

For u>u,;, equation (4) can be transformed [13] to the form which is
appropriate for the numerical solution
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where f(uy,) is given by the relation (6) for u=u,,. The iterative procedure
suggested for the solution of equation (9) is similar to that developed by Sherman
[16} who neglected the effect of the electron-electron scattering,

IV. RESULTS

In Fig. 1 and 2 we give the numerical results for the ratio f(u)/ fu(u) obtained for
the following input parameters characterizing typical nonequilibrium argon plas-
mas: n;=1.61x 10" cm™, T.=10000 K and T.=30000K, T, = T.=300K and
T. =T,=1000 K and 10° crn- s=n.<10%cm™?,




Fig. 1. Electron distribution function normalized
on a Maxwellian at the electron temperature
T.=10000K as a function of electron energy.
Solid curves: T, = T,=300K, dashed curves :
L=T=1000K; n, = 1.61x 10" cm 3.
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Fig. 2. Electron distribution function normalized
on a Maxwellian at the electron temperature
T.=30000K s a function of electron energy.
Solid curves: T, =Ti=300K, dashed curves:
T.=T.=1000K; n, =1.61 x 10" em™.

V. CONCLUSIONS

From our numerical results it follows:

i) The assumption of the Maxwellian distribution function usually found in the
extensive studies based on the CR models is unjustified under the conditions

considered.

ii) The body of the distribution function is nearly Maxwellian for the ionization

degree n./n;>5x 105 for all cases investigated. This information may be valuable

heavy particle temperature term in the Boltzmann equation as most authors do.
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