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0 THREE-DIMENSIONAL PHOTOACOUSTIC ... -
EFFECT |

. 'C. CHOW"), Edwardsville

The theory of three-dimensional’ photoacoustic effect ‘with'*a " solid ‘sample in” :

a gas-filled chamber is extended to include the propagation mode contribution. The heat: i8¢
transport in a cylindrical photoacoustic cell is annalysed by solving a set of linearized
rﬁ_noaﬁ.»amn equations and an expression for the photoacoustic signal resulting
therefrom explicitly derived. The expression can be used to assess the contribution of the
propagation mode as well as that of the thermal -diffusion mode to the photoacoustic
effect.
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INTRODUCTION

The photoacoustic effect ‘arises’as a'Tesult of the heat ibsorption by a material
sample jlluminated by an intensity-modulated source andis:detected as a sound
wave in a gas-filled chamber in which the sample is situated. In general, the

intensity and phase of the photoacoustic signal depend in a complicated manner on- -

the physical and geometrical properties of the sample and other “materials ‘(the
cmnw:_mm:vmqﬁnm:amum in the photoacoustic cell) in a given oxvomimam_wmmmw.

Insofar as the photoacoustic effect is a useful tool in characterizing the properties of
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the sample, and because it is simpler-to do 'so, much greater attention has‘so far
been dirécted towards correlating photoacoustic signals with the physical proper-
ties of the materials whilé omitting the geometrical complexities inherert in the
experiments. A ‘symptom of this situation is that most considerations in this field of
study have been restricted to one-dimiensional cases. (For 2 good review, see Ref.
[1].) Itiis; however, not difficult to appreciate that for many ‘realisti¢-applications
the one:dimensional” consideration has at ‘best' a qualitative’ ‘asefulness:* For
example; the incident heat sotirce is typicallya‘laser, which illuminates but a small
portion of the sample and ‘thetéforeithe dissipation of heat in’ the sample and,
subsequently,in the'gas and indeéd the generation of photoacoustic signals itself

are essentially n:.ao-agoummoa&@a.mmo,a.wﬁwwm,..Emmm. the case has of course beén
recognized in the past. Q uimby and Yen [2] have observed that heat transport in
the gas transverse to' the ‘difection of the incident beam gives the photoacoustic
signals characteristics not accountable in a one-dimensional theory. More recently,
Murphy and Aamondt {3] have _observed and studied the significant signal
enhancement due to the three-dimensional effect.

In a previous, article. [4],. hereafter referred to as I, the, present author has
attempted to develop  fully three-dimensional theory of the photoacoustic effect.
Specifically the theory is applicable. to cylindrical samples and photoacoustic cells
of a finite dimension and to a heat source with a centro-symmetric but otherwise
arbitrary beam profile..In I “ﬁn,bwwﬁmgwmoﬂﬁ: the gas chamber, is destribed as
tuo to a thermal diffusion process, It is well known [5] that in addition. to the
thermal diffusion mode, which decays over a.characteristic distance, (the, diffusion
length), a, fluid can mcﬁvo};@g&mn Evgmmmnm :mode of Bonon., iEor .can be
sustained indefinitely but for the influence .of viscosity and boundaries.. The
purpose of this =oﬁdm.‘mw.«,w.,mﬁmﬁﬁa contribution of this preyiously. negle

cted
propagating mode to the three-dimensional photoacoustic effect. In Sec. I the
problem is formulated and an oxunwm.&wu ?ﬁ&m photoacoustic signal is derived for
the same problem as considered in I except that here the temperature variation in
the gas, which ultimately: produces the photoacoustic mmmw&mwﬁm,m&mnigmm by
mo_;&:m‘m\“mwa.om._muwmauam hydrodynami quations (as opposed to the thermal
diffusion equation alone) leading to. the concomitant presence of the thermal and
propagating modes in the signals. In Sec. 1Tl a brief discussion of the results of this
study is made. : : SRR
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+ In this section'the contribution of the pro agation, mode jin, addition te
thermal diffusion mode to the ﬁioowaﬁmummg& vroﬂomoocmnn effect is ann.?oa
under the following oxmmna,n:ﬁ_;nom&nq?_ An optically homogeneous cylindrical
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solid sample with thickness [‘and radius @ 18 mounted on a backing mcvmqwa which

? to,the
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is located in the lower portion of a cylindrical photoacoustic cell (z=—-1toz=0in
the %:&8_«82&58&“. the remainder of the, cell is filled with a gas. An
incident light chopped-at.a frequency f= w/2%. is focused on the centre of the
sample and penetrates into it according. to the Beer-Lambert -law. In I the
photoacoustic effect as a result of the thermal diffusional motion of the gas under
the same condition has been studied in"detail; that study contains several results
which will be: cited here without derivation in order to avoid repetition..;

‘Central to the determination of the mroﬁom,no:mmm effect is the derivation of the
temperature in the gas region, which in turn is affected by the temperatures of the
sample and backing material (7. ...E,E.avrnamvoo%og.ﬁ he latter may be found by
solving the appropriate thermal diffusion equations: . ; .. ok

where B is the thermal diffusivity of the medium i (i = $, b for sample and backing
[material, respectively), @ is the’ ?&Eoo.&..%?m optical pénetration length of the
m»&@&wéi&.i& is the incident beam profile multiplied by 2k./a, with K; the
sample thermal éonductivity: “o . EREE N Pl ;
The temperature in the-gas is determined by solving the hydrodynamic equa-
tions. In such a treatment the basic'variables characterizing 4 fluid are the density
do+ 8, ‘pressure "Po+ p, ‘temperature To¥ %, , entropy density So+'s, and the

velocity field u. Here the qiianitities with subscript zero denote the ambient values

qm‘mar,n.éumm_u_om. >.~ Em\.uw@w_" where viscosity may be neglected ‘the linearized

hydrodynamic’ o,a_,_mmonm” are: [5] the onﬁmo.l of ‘continuity

. belded
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and ‘the’ statement’ of ‘coniservation of ‘energy
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These équations ﬁm,a be supplemented b .Emi.o.aﬁwﬁﬁ relations, the first
of ‘which s the eqution of state” " RE s iy T e A E S
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while the second relates the variation of entropy density t0 the change in pressure
and temperature

88\ L (38 _acfmor=lE
Tﬂmavul,ﬂ%v%»&@? Y & 9

-where C, is the isobaric heat capacity and v is the specific heat ratio. In both Egs.

(6) and (7), the second .nncwmﬁ,moﬂ_c.im from the assumption that the gas may be
regarded as ideal. In addition one may impose the boundary conditions that the gas
temperature takes on the ambient value at the cylindrical wall of the cell and that
the velocity field vanishes so-that there is no motion: of the gas at the wall.
+.The temperature 7, can be determined in a manner similar to Kirchhoff’s
analysis of the effect’of  heat exchange and viscosity on sound propagation in
a narow tube [6]. Eliminating the variable entropy density s from Egs. (5) and (7),
one obtains © i e T ‘ . 5 - :

o, _(y=DTedp) m .v
i e s ,B.On#m« Po mblxuda? . Amv

For the remaining variables 7,, 8, p, and u, one looks for solutions that vary
temporally as the modulating incident heat source. Then their spatial dependences
(for which the same symbols are used in the interest of simplifying notations) may
be obtained by solving the following equations:

doVu=—jod - ©®

Vp=—jodou . (10)
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where the gas E&.&»m&ﬂ{&i@ B, = .A...\O‘Lh is F:w&ﬁ&. Egs. (9—12) may be
it g0 eliminate p. 8 and  n fovor of i yilding T
(Bl VAL J(YBewo/ B} V5 + (@) %=0 . (13)
where'ci = (yPo/ de)* 18 the speed of < find in the medium. The solution to Eq. (13)

is given by : Bt e s LI

—

L e = B S )
Here w,_ﬁ‘wwma 7, obey the’ equations - o L WEET
e (V=) mles 2)=0 . : (152)

o (= A)ule, D=0  (15b)
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where A; and A, are the roots of the following ncm&m..mo equation ¥

S

(Bol )N+ (1 (Y@l A+ (@YD) =0, -
To the _oimma order in (@B/cd), At and A, are m?g..cw 2
A= (@/B:) (L +i(y = D)(@Bel o)}
= — (@A~ DB

If the terms in (@f;/ c2) are neglected in the expressions for ?.‘.N.Sa Azy Ty and T,
obviously describe. two types of 88@0323A.?,ommmwao?panmGern_‘B&hEcw
sion and acoustic propagation, as may. be most clearly seen in the oua.,&En.:mm.o:m_
versions of Egs. (15). In particular, Eq. (15a) for .s with-A;=jw/Bqis essentially
the starting point of L It will be noted:that the. two types ‘om,Bomon.,_»anﬁ
completely independent of each other with the terms in (wP,/ct)sproviding
a coupling between the two. o S

The solutions to Egs. (15) that are in accord with the boundary conditions may
be developed into a series . .

Ep. vk ones
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and wheré a, is the nth zero of the zero-order Bessel function and where As and A2
are related via B .

i S
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a result which is found to hold to.a sufficient degree at typical wmmmwmmmm hopping

frequencies. In identifying expressions (18) as the solutions to Egs. (15) an implicit
_ assumption has ‘been made, as in i, that'the cylindrical cell is sufficiently long sO
" that the temperature wave reflected from the end wall of the cell (opposite {p,(he
- sample) may be neglected. . e v , . un&@,w et
To determine the gas temperature completely one makes use of the equations
describing the .ooumuch in the aavmnwawm and heat*flow at the ‘boundaries that

separate any two of the three regions of gas, sample, »n&cmogmwwc%mﬁ
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(B )b Gal) + {1 (B0} Gel) =0 “@0)
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The temperature of the sample 7, and backing substrate T can be determined via
a Green’s function method and they are given by (see I) :

(0 2)= 3, Ju(ac0la) | $i(n) €+ Sulm) €7 (222)
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in - which 0, =2{a*Ti ()} % Ji(x) is a first order Bessel function, Q..,sz =
= ((a?/a®) +i(w/ B} i=s, b, and I(n) is the Bessel decomposition of the beam
profile:

1= Ko lwelare de- (23)

Egs. GS and AMC nosm.ﬁﬁo five simultaneous n.ncwmonm which can be solved for
the expansion coefficients Gy(n), G2(n), Si(n), Sz(n) and B(n). For the gas region
with which the subsequent om_n._,:mmo:m will be concerned, one has

S 14iB ek g -
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4 Gl =i 0 (n) )

{1+ b(n)} a.(n)+{1— b(n)} a—(n)

¢

o (25)

) A B9

n

)= fexp [£ w(n) 1] - exp T&?i.ém va(m] o
and
b(n)= K0y (1) K:0.(n).
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In relating the gas temperature variation to its pressure which photoacoustic
effect measures, a distinction must be made between the manner in which pressure .
variation is generated by the thermal mode T, (consisting of terms with Gy(n)) and
propagating mode T, (made up of terms with Ga(n)). The contribution 8P from
the thermal mode is envisioned to arise from the compression effect of a small
region adjacent to the sample, the “thermal piston” in the sense of Ref. [7], and itis
given by (see 1) Lo T R I

i miim. D) . - @n

@ —
aF To L . |

where [, is the thickness of the vwﬁon Amnﬁnm_ thermal diffusion lengths), I, is the
length of the gas column, and { ), denotes a spatial average over the volume of .
the piston. The contribution SP® from the propagation mode, on the other hand, is _
determined by the hydrodynamic flow of the gas and is given by, upon making use
of Eq. (11).

sp@ =
= -DTo

where ( )a indicates 2 spatial average over the volume , of the gas column. It _m
then seen that the ﬁro”omnocmmn signal 6P may be Q.Gnomwma as

W™ i) (e a9

8P = 6PV + 8PP

with D
S dmyPo e {1+j(Be/w) e} “K(n)
OPO=""r0 :u..\ev?up__vMsS
5por . AmtPo e (14 (Bl 0) 2} (1+](B/ 0) b1} 2 Kn)
“-DTo iBJ0)A—2) % )
, In) (14 b(n)}as(n) + {1= b(n)}a-(n)
,N?vu

2 (o) (T BV +a(m) = (T=bHI - g} ™

5 G437

Eqgs. (29—32) “constitute the .extension of the study of: the three-dimensional
nroﬁo,moocmmn, signal to include the contribution from the propagating mode. It may"
be readily verified that in the neglect of the latter, in which case A,= jo!B, and
4;=0, Eq. (29) is reduced to’ the previously obtained expression for the photor
acoustic effect arising from the thermal diffusion mode alone (namely, Eq. (24)of
I, in which, however, a factor of 27 has been inadvertantly left out.) o
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Iif. DISCUSSION .

The objective of this note is the derivation of the propagation mode contribution
to the three-dimensional photoacoustic effect, ‘which has been omitted in 1.
A motivating factor for the present undertaking has been the observation that
while the theory of I agrees rather well with the experimental results using

a Corning glass sample in air-and in helium [2] over a wide range of modulation

‘frequency, the agreement between theory and experiment is poorer in the low
chopping frequency regime and it is suggested [4] that the inclusion of propagation
mode contribution be examined. The results of the present study have indeed been
applied to the above mentioned systems, but detailed numerical calculations
indicate that the propagation mode coritribution is much too small to bring about

a significant improvement in agreement. On the other hand, since the currently
available theoretical acounts [8—10] that do include propagation mode all deal
with one-dimensional cases, it is felt that the results of the present three-dimens-
jonal treatment may be useful in the future in analysing other systems.
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