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ON PROBLEMS OF RELAXED COMPUTER
MODELS OF THE STRUCTURE OF METALLIC
GLASSES

. L. MITASY, Bratislava

Some recent results in the .BoanE:w of the structure of metallic glasses are briefly
reviewed. The importance of the. usage of the realistic interatomic potentials is

emphasized. The possibility of the, evaluation of the potentials from the second equation

of the BBGKY hierarchy is studied. To do so, a certain kernel of the integral equation
must be known. The computer model of glassy NigiB1s is constructed and the simple
method of computing this kernel from the model ..muno»@ is derived. ;o_wvwaxwammon
of this kernel based on the superposition approximation of the triplet correlation function

and its true form calculated from the modei are compared. The results show that with the
exception of distances cn_ot.ﬁm ‘position of the first minimum of the pair SRn_snou.

function this approximation is very. good.

O MMPOBJIEME PEJAKCAIIMOHHOTO MOJIETHPOBAHMSA CTPYKTYPBI
METAJIMYECKAX CTEKOI IPH HOMOmMHU 3BM

B paGoTe DPHBORUTCH KpaTKui 0630p HEKOTOPBIX ROCTIDKEHMIT B MOJ(E/IBPOBaHHUK
CTPYKTYpbl METAIITHIECKUX CTEKOM. Iog4epKUBaeTCA HeOOGXOMMMOCTE HCIONB30BAHUA
B pacdeTax PEATHCTHIECKHX MEXATOMBBIX TOTEHIHANOB U H3YYeHAa BO3MOXHOCTD
ofpeaereHHs ITHX HOTCHIUANO0B M3 BTOPOTO YpaBHEHHA B NeNOTKe ypasreruii BBI'KY,
AJIA 1ero HeoGXOHMO 3HATD AAPO HEKOTOPOTO HHTETPANLHOTO YPaBHEHHS. Ipn nomouH
3BM co3faHa MORE/b METAILTHIECKOTO CTeKAa Nig:B1o # NPHBOJMTCA HPOCTOH TOUHBIA
METON, KOTOp&Ii THO3BOMACT ONMPERCIHTE K3 MOJIe/IH AP0 MHTETPANLHOIO ypaBHEHHS.
TIpoBefieHO CPaBHEHHC =v=9_5_§~rn AN 3TOTO ARpa, MOAYYEHHOE Ha OCHOBE npu6-
yokenns GYHKIHH TPOHRHOH KOPPEAAIHH, C TOYHBIM 3HAYCHUEM Sf(pa, ONpPENCICHHbIM
M3 MOJIENH. : ;

PeayuTaThl CpPaBHEHUA NOKA3BIBAIOT, 9TO flaHHOE NPHGIHKEHHE SBAAETCE XOPOIIHM
33 HCKIIOYEHHEM vmonaoamweaov!n HIDKE NMEpBOTO MHHHMyMa (DYHKI[HE HMBOHHOM
KOppENsiTHH. ;
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I. INTRODUCTION

In spite of a considerable effort the problem of the atomic structure of metallic
glasses is not solved completely yet. Probably the most frequent way to study this
structure is the computer modelling {1}. Computer models constructed by the
relaxation, €.g. by the minimization of the total potential energy of the system when
prescribed interatomic potentials are used, reproduce quite well the experimental
data, although some differencies remain [2, 3, 4].

The main problems in the modelling could be divided into three groups. First, it
is the reproducibility of models, e.g. that certain statistical characteristics which we
use as criteria must be independent of the “technical” details of the relaxation (the
type of minimization method, the number of atoms in the model, etc.). Recently
Lancon et al. [5] have published a study of this question and as criteria they have
used the pair correlation function (PCF), potential energy and density. Constructed
models were one-component, with the Lennard-Jones interatomic potential. Their
results showed that the change of number of atoms or the use of different boundary
conditions (free, periodic) caused negligible differencies of the mentioned statisti-
cal characteristics. Also the usage of different methods of the minimization yielded
only small changes of these characteristics.

The second problem is the question of the initial and terminal states, e.g. what
and how many different glassy Amm:om A&mmnﬂ;. in a sense of the above mentioned
criteria) could be obtained when the relaxation is started from the different initial
configurations. Very.recently Lancon et al. [5, 6] have investigated the relaxation
of the various initial disordered and partially ordered configurations. Using their
results: it -is7possible to propose-a qualitative -solution of this problem in the
onecomponent system with the Lennard-Jones potential (Fig. 1). Every point of
the horizontal axis represents the structure with a certain degree of disorder. The
degree of disorder is increasing from left to right: C-crystal, A-amorphous state,
D-“totally” disordered state. The state D is for .example the structure created by
the random number generator with an uniform: distribution: When we: take into

- account that the minimization methods-are based-on the gradient of the potential

energy [2,3,4], itis clear that if the initial structure is'somewhere between Cand
P after relaxation the ‘crystalline order is obtained. Similarly, when. the initial
configuration is-somewhere between: P -and - D, the reproducible amorphous
structure A is obtained, which, as it seems, is unique [5, 6]. Unfortunately, the
situation is probably more .complicated ‘when “the system is multicomponent or
when more realistic potentials are used.’

{Thirdly there is the fundamental problem of the estimation of the true pair
potentials. Very often the potentials are of the Lennard-Jones or the Morse types
with the parameters estimated intuitively or fitted to some limited experimental

_information {elastic constants, isothermal compressibility, -etc.). There are two
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possible ways which yield the correct estimation of the potentials. The first is based
on the ab initio quantum mechanics calculations. In fact, this approach is possible
only for simple metals, but not for transition metals, because of a _mnw,om. the
appropriate method [7]. Another approach are the BBGKY integral equations A.Hro,
womo_<=g<|wo~=10nnn=|wmnwiooa|,|<<o= hierarchy [8, 9]) from: statistical
mechanics, although this approach is also far from simple. The first disadvantage is
the necessity of precise experiments which yield the PCF (or the partial pair
correlation functions when the system is multi-component {101). The other is the
necessity of approximating the triplet correlation function (TCF). ;

" Fig. 1. Potential energy pet atom of structures,
with an increasing degree of disorder. C— crystal,

A — amorphous reproducible state, D — “total-

, 1y” disordered state. e [
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In this paper we want {0 empbhasize the fact that for the correct estimation of the
potential from the mentioned equations the entire TCF-is not necessafy .C..:,. but
only a certain kernel of the integral equation which is a function of aio,é_:we_om we
must know (the TCF depends on three variables). Naturally, this kernel must.be
also »vﬁoﬁaﬂnm.v_ﬂrw can be done in such a manner that the kernel is 88@&.&.
from the approximated TCF. Thus another aim of this paper is to check the validity
of this approximation. In.order! to-perform this, the. computer model‘of ; glassy.
Nig;B1s is constructed-and the simple method of calculation of this kernelfrom the
model is derived. The statistical characteristics of the model are compared with »r.o
recently published experiments:on this system and a quite good »mnnnﬁonﬁ,‘_w
achieved. Then the kernel is computed from the model -and also-by ,«;_._mEmﬂnEw,
mcnaGOm.aon approximation for the TCF and the results are compared. i

' Pin

e s THEORY

.- Let us assume the M-component, homogeneous, isotropic, classical and equilib~

rium system of atoms, where ‘the total potential energy ‘1S the sum of the-pair
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potentials. (Although metallic glasses are metastable systems in general, many of
them have a very long relaxation time, so that the assumption of a stability in the
room temperatures could be used). The volume and the absolute temperature of
the system are V and T, respectively. Let us denote the pair central potential by
@u(r), Oc is the average number density, ga(r) and gae(r, 1, 5) are the pair and
triplet correlation functions respectively, and the indexes a, b, c indicate the types
of atoms. Then the second equation of the BBGKY hierarchy after some

arrangements similar to those of Born and Green Guaoc_m_uavnmmn:ﬁoa 55@
form :

L(N=eu()+ 3, [ Kalss okl ds e
where ,
qﬁ@ﬁ\v = |~ﬁm.HJ In QawAﬁv ANV
Kunls, r) = 47570 _ L (P ) gadrs ) dt 3)
= e

and kg is the Boltzmann constant. When M >1, we obtain a system of integral
equations (a,b=1, ..., M). Because of a lack of information about the triplet

correlations one has to use approximations. We used the superposition approxima-
tion [12], where the TCF is given by

Gasels 15 )= Gas (1) Goc () Gea(5)- 4)
Using (4) we find that A.Ewm Woi& given by (3) has the form

uﬂ N.v..n
Kads, 1)=7 0:gea(5) hl_

(P +s*—1) g (1) dt. (5)

It is well known from the simulations of structure of some liquids that equation (4)
is not correct at higher densities. This conclusion is also obvious from the recent
molecular dynamics of the'solid amorphous structure performed by Tanaka [13].
From the point of view of @.(r) in equation (1) the complete knowledge of the
TCF is not necessary [11]. For: the correct estimation of the @& (r) only the
correctness of equation (5) is important. There is a possibility to check (5), because
the kernel could be .n,oﬂnﬁoa from the model exactly. The evaluation of the kernel
from  the model by definition, (3) is somewhat inconvenient, so we proposed

another way to. calculate it. First some definitions are introduced. The conditioned

TCF is defined by |

gty SITY= gaadr, 1, 9)/ () o ®
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Then we can define the nou&noanm PCF by

r+s

Qa\vnﬁh\ﬂv Nﬁv.« m@n\vaﬂ.mu M\ﬂv Q&" ‘ A\\v

fr—si

T

% gend VP +s 2 - 2rs cos O, m\_‘vwa mE..:;

where the familiar equality £*= 2+ s*—2rs cos @ was used: The next a@m_u_noa is
the angular conditioned probability density

gema(Vr? + s —2rs cos 8, s/r)sin & .
Nnn\wnﬁh\ﬁ.v ,AV,

Qﬂ\wuﬁawu M\v.v =

Using these definitions it is possible to rewrite the kernel in the form

PR

Kads, )= 4705 cwe(S! r) cos Bemals/ r) 9)
where ,

cos ?z@Snb gt0u(8, 5Ir) cos B d. a0

The evaluation of the functions on the right-hand side of Gv from the Bomn_ is
relatively simple. Namely

mtzan\bl N. fa 7. As !

-1

Ny()
M zx v ,H,N,.Aw:

N, ZNA.V Ny(h, i) cos ¢r\=

‘cos wa;.ﬁ\ﬂvlluw“_ & M ZNSZ%: b

kt.

Ea,. -
ZuT b 1 iw@u uln wun_ = ,;v

NG e

Zuc 3 5 w: oﬁan ommnu

where N, is the _EBdon of atoms of the aGn a, ZNS is the number of atoms of En
type b for which r— blwA&C jy<r+Arl2, Ny(i, j) i is ‘the EE&Q of uao.wwdm
the type ¢ for which's = Asfa<d(i; ky<s+As/2and d(1,'m) %saam the’ emwmmmm
between the atoms [, m. Further, cos ®wy=§.F/sr when assuming , thaf the position
of the atoms i, j, k are the same as in m_m 2.Insucha 23. we wwﬁu w<oana 9@

evaluation of the TCF.
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Z—o.—o_ of n—»umw Nig;B1s

K

The metallic mﬁmw Z;.ms was oromma as a ann— system cmomcma of relatively
precise experiments, from which the partial pair correlation functions are evaluated
[14]. To begin with the coordinates of approximately 2000 atoms closed in.a cube
were created by the random E:ncmn generator 2555 any. further _dman:oam.

LI
e 8 .
S : <iNi-B
= 4 .
T AR
Fig. 2. wom_:onm of atoms i, r " k for equation (12). 4 /.\\. g >
Here cos Gwy=§.F/sr, where s =|§| and r = |7}. v Y T
g -3
8

Fig. 3. A comparison of a model calculation (full
curve) with nxuananuﬁ_ data of .NieBis, mzu
935__82& in the E%E.. e

“irg 02 04 06 rinm] -
The _oam:_ om Eo oama om 9@ oz_un imm oromon _Pm:nw a BEEQ ::: Eo amum:v. was
the same as Go.nwvmﬂagg_ one (8.4 g/cm®).. The Bnnroa of nn_wnm:ou was the
same. as used by Kobayashi et al..[2]. The density was constant: luring, the
relaxation and periodical , Jboundary.. oon&: ons were cmoa .;n Ha_mxm:ou was
stopped. when.- the . average: displacement iwm m&ocn 0.0009 nm,. O:E umm__m&_n
changes. of .the PCF were: produced by ?2:2 relaxation. ;The Eﬁnmn:oum are
uomn:coa d< Em nncnn»aa Morse coﬁ:ﬁﬁm ﬁ: SR

P i

\w@ ?nﬁ ;_, N exp an %Aa
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‘Parameters of the Morse potentials used in the modelling of the metallic glass Nig:B1o

.. Interaction . . . D [eV] . @ {10 nm™] ro {107 nm] . r. {107 nm]
SONE=Ni 0.44891 7 -L8 . 26407 0 um | stk
oo Ni—=B ‘0.4938: . k9o s s L sy m.N .
BB 0.26935 1.8 34 43
where f(z) is a modification function m?mm.g

NANVMmNalmNu+m.wN, z<1; f(2)=1, NV#. (15)

The parameters of the potentials are listed in Table 1, and were found EEE&Q
after some trials (except D for Ni which is from [15]). This ineffective and heuristic
approach is a consequence of the lack of information about the interaction in
metallic glasses. Direct use of the parameters calculated from crystalline models
[15] is not always successful, for. example the parameter ro for Ni is 0.276 nm,
which is too large in this case. The resulting partial radial reduced m._m::u:mom

functions Qumwaumv are 5. Fig. 3 8@@92 with the o«voaao_:m_ ones. The PRRDF

G.s(r) is given by s ,
Gas(r) =47rgo(ga(r) =1) (16) -

where 0o I8 the total ‘amicon moi:w. Then the kernel (3) is noq.uvﬁoa from the
model by (9), (11) and (12) for the case of a, b, ¢ denoting Ni atoms. The results

are compared with the approximation given by (5) where the partial Ni—Ni PCF of *

the model ‘was used (Fig. 4). .~

'

... ML RESULTS AND DISCUSSION

B > moomnw\m‘mnoao& !E._ the experimental wprUm in the case of the Ni—Ni
 correlation is‘obtained (Fig. 3); where thie'typical splitting of the'second miaximum

is H0m0—<0nm .‘,.H.ﬂw»ﬁvm casé’of Ni—B N‘ﬁﬁ.w.lm.‘,ocwwn—mnmdn_m the agreement is not's
g6od:!Thé first peak of the Ni—B curve isnicely fitted, but the first submaximuri’of
Ew.. second BmE uawxmﬁma is‘weakly @&mocn&m Iso a rather peculiar shape lof
the first main’ peak of the B—B curve is not produced. From these Tesults it can bé
concluded-that ‘the intefactions in” hé 'glassy Nis{Bis'are

i

Bmﬁ..,oa by the used potentials. - <" i KN ) ,
The calculated and mm?@xﬂ:ﬁna_wmaaow for r=0.25; 0.32 w.o.hn, ; 0.55 [nm] are

A

in m..mm.,.,».,,m‘oq‘ the first maximum of the PCF (r=0:25 nm) the .approximation is
rather unsuccessful. For r=0.32 nm the dispersion of the kernel computed from ¢

the model is great because of a rare occurence of the pairs with the distance close to
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Fig.4a

K(s,r) [1onni']

b) r =032

YO 04 S 06 s o)
m_wac

the.first minimum of the PCF:Thus in that region of the variable .r. some further
investigation must be performed. But for ¥ = 0:42 nm it is obvious that the kernel is
very well approximated by (5): This ‘result is rather surprising when we take into
account that in the amorphous system simulated by Tanaka [13] the TCF was
approximated badly by (4) also for distances ‘greater than the position-of the first
minimum of -the PCF. The equation(3) ‘rearranged into the -integro-differential

form with Eo;wcvaoﬁawmcw_ (4) (known "as the Born-Green equation) was
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c) r=042

02 s i 04 06 s [nmj
Fig. 4c

-

K(s.r) [1onni')
o

1
-

'd) r =055

02 7 04 o 0e 0 shn
RO ; Fig.4d e )

,mmn.ﬂ 4. The kernel of the integral-equation (1) for Ni—Ni—Ni correlations: a) r=025;b)r= 0.32;0)
r=042; d) .‘ucv.u,m {nm), Full curve: evaluation from. the model by (9), (11), (12), broken cusve:
) evaluation from the approximation (5). . ... - o o

frequently used moa.‘_EEmm and nmnm‘azw‘,w_mo n.o..n the mo:m. w..&o%:o& &aﬁE Eo__ 1_ m
is interesting that the conclusions are sometimes contradictory. For oxuau_«o“m:u_u
[17] concluded that the Born-Green. equation without improvements is ill con-
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ditioned. On the other hand Fu jiwara etal. [16] computed the potentials for.the
Cu—2Zr amorphous system and problems were not reported. Although these
discrepancies may be due to different methods of solution, the stability of equation
(3) is the next problem to be investigated. To perform this a better approximation
of the kernel (3) in the small r-region must be used. From this point of view the

improvements of the superposition approximation found by Suda [17] seem to be
promising. e : ST _

ACKNOWLEDGEMENTS

1 would like to thank Dr. L. Cervei, Ing. J. Kristiak and Dr. M. Krajéi for
valuable discussions. . : ‘

it 'REFERENCES

{1] Cargill, G. S. IIL: Atomic Energy Rev., Suppl. N. 1 (1981), 63.
[2] Kobayashi, S, Maeda, K., Takeuchi, S.: J. Phys. Soc. Jap. 48 (1980, 1147.
[3] Fujiwara, T., Chen, H. S, Waseda, Y.: J. Phys. F: Metal Phys. 11 (1981), 1327.
{4] Bodreaux, D. 8. Gregor,; J. M. 1. Appl. Phys. 48 (1978), 5057. ;
{5} ﬁwnnon.m..,E:E.?P:Fw:mwnbu:Or»Bc.nuoP A.:J. Phys. F: Metal Phys. 12 (1982), 259.
{6] Lancon, F,, Billard, L., Chamberod, A.: Sol. Sate Commun. 44 (1982), 271.
[7] Hafner, J:: Atom. Energy Rev., Suppl.-N. 1:(1981), 27. < s :
{81 womo::coﬁ N. N.: Problems of a Dynamical Theory inStatistical Physics. Gostekhizdat.
Moscow 1946. S v d g : :
9] Born, M., Green, H.: Proc. Roy. Soc. A 188 (1946), 10.
{10] Wagner, C. N. J.: )& Non-Cryst. Sol. 31 (1978), 1. - g ’
[11) March; N. H,, Tossi, M. P.: Atomic Dynamics in Liquids. Macmillan, London 1976.
{12] Kirkwood, J.: J. Chem. Phys. 3:(1935),300. ~ © T -
[13] Tanaka, M.: J. Phys. Soc.’ Jap. 52 (1983), 1270. : e
[14] Lamparter, P., Sperl, W., Steeb, §.: Z. Naturforsch. 37a (1982), 1223.
{15] Pamuk H. O, Halicioglu, T.: Phys. Stat. Sol. (a) 37 (1976), 695.
[16] Fujiwara, T, Chen, H. S, Waseda, Y.: J. Phys. F: Metal Phys. 13 (1983), 97.
{17) Suda, M1 Z. Phys. B.— Condensed Matter 50 (1983), 1.

#

Received O.ronn :.5. 1983

PSS

325



