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AN APPROACH TO THE CALCULATION
OF NONPERTURBATIVE ENERGY-LEVEL
SHIFTS IN HEAVY QUARKONIA

DESCRIPTION OF THE METHOD
S. OLEINIKY, Bratislava .

An approach to calculating shifts of heavy-quarkonium energy levels due to the
interaction with the gluon condensate is developed. The problem is reduced to finding
eigenvalues of an infinite matrix. The corresponding secular equation is then shown to
lead after a series of approximations to results originally derived by Voloshin and
Leutwyler using somewhat different methods.

OF OTHOM METO/E BHMHCIEHUS HENEPTYPEAIMOHHbBIX
_ . CHBUTOB ;
IHEPTETMMECKHUX YPOBHE! B TSKEJBIX KBAPKOHMSX

B paGoTte pa3paGoTaH MeTOJ| BHIYHCICHHUS CHBArA FHEPreTHIECKUX YPOBHENH B THXE-
JIBIX KBapKOHWSAX, OOYCJIOBJICHHOTO B3aUMOfCHCTBMEM C TIJOOHHBIM KOHJEHCATOM.
IIpoGnema cBefleHa K HAXOXACHHIO COGCTBCHHBIX 3HAYCHHH OnpeencHHo#i GeckoHey-
Ho# MaTpuupl. IToka3aHo, 9TO COOTBETCTBYIOHICE BEKOBOE YPaBHEHME MOCAE psfa
npuGAMXKEHHit NPUBONHUT K Pe3yNbTaTaM, BEpBbIe nonydesHsM Bonoumuem u Jleitr-
BHJIEPOM, KOTOPBIE OfIHAKO HCIONL30BAM APYIHE METORBL.

S

L. INTRODUCTION

Quantum nrHoBo&&mEmom [1] (for reviews see e.g. [2]) has become widely
accepted as a promising candidate for the correct theory of strong interactions.
Owing to its property of asymptotic freedom [3] it is possible to extract a whole
variety of perturbative QCD predictions for the phenomena which are woﬁa.oa by
a small effective coupling constant, i.e. for which the smallest distances are relevant
[4]. On the other hand, the long-distance phenomena cannot be calculated reliably,
since the effective coupling is large and perturbative methods are no longer
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After the discovery of the families of ¥ — [5] and Y-mesons [6] a new area for
testing QCD predictions and QCD motivated ideas has been opened. These
systems (called quarkonia) interpreted as bound states of heavy quark-antiquark
pairs (the distinguishing quality is called charm in the former family and bottom-
ness or beauty in the latter one) are singled because of three properties :

1) their constituents are heavy enough so that the systems are essentially
nonrelativistic;

2) the effective coupling between the quark and the antiquark is sufficiently
small so that they are similar to Coulombic systems (like positronium);

3) their characteristic radius is fairly small so that nonperturbative effects should
show up rather simply. ,.

Properties of the members of both families can be to a large extent accounted for
by a simple potential model approach (most recent reviews are listed in Ref. [7]).
This relies (in the first approximation) on the nonrelativistic Schrédinger equation
with a static quark-antiquark potential. A QCD motivated potential of this sort has
to reflect two features: first, the asymptotic freedom of QCD at small distances,
and secondly, the apparent impossibility of the existence of free quarks. While the
short-distance part of the potential is thus (at least in principle) calculable using the
methods of perturbative QCD (see e.g. [8]) and in the lowest approximation is
given by a Coulomb-like one-gluon-exchange term, the long-distance confining
part of the potential is usually approximated by a linear term for which there is no
reliable justification within QCD (except probably for lattice calculations [9]).
Moreover, present-day data on charmonia and bottomonia are unable to fix the
form of the potential unambigously, since their properties are sensitive mostly only
to distances from ~0.1 to ~1 fermi and various types of potentials which are
roughly identical in this region can be used [10]. o

The origin of the confining part of the static quark-antiquark potential is usually
attributed to the complicated structure of the QCD vacuum fluctuations. An
analysis of the hadron properties by the ITEP group using the QCD sum rules [11]
has suggested a possibility to vm,nmaoﬁ.no the characteristics of the QCD vacuum
by a set of vacuum expectation values of combinations of quark and gauge fields
(so-called condensates), e.g. the chiral symmetry breaking condensate (0] ¥¥]0),
or the gluon condensate (0|F;, F**|0). (¥ and Fy, denote the quark and gluon
fields, respectively.) = DAy , S - T
~Recently, Voloshin[12] and Leutwyler [13] (see also [14]) have attempted to
calculate the effect of the gluon condensate on the characteristics of very heavy
quarkonia. They argue that for sufficiently large quark masses (of the order of tens
GeV/c?) the quarkonium radius should be small enough compared to the charac-
teristic length of vacuum fluctuations and thus one could use only the first few
terms of the multipole expansion similar to that of quantum electrodynamics.
Moreover, if the gauge field changes slowly not only in space but in time as well,
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one can in the first approximation face the problem of a quark-antiquark pair
moving in a constant random gauge field. Using these assumptions and considering
only the electric-dipole-like term of the multipole expansion Voloshin and
Leutwyler found corrections to the Coulombic energy levels of very heavy
quarkonia which were proportional to the gluon condensate (0] Fa, F*|0).

However, the authors’ results are inapplicable to charmonium and bottomonium
since their calculation is perturbative in the gluon condensate. In fact, the relevant
parameter estimating the strength of the perturbation & =47xq, (0|Fs, F*[0)/m*p°
(here m is the quark mass, a, = g%/4x is the strong-interaction fine-structure
constant, and f =4q,/3) is far too large even for bottom quarks. Thus, the results
of Voloshin an Leutwyler, though being of principal interest, should become
applicable to real quarkonia only after the discovery of bound states of top quarks
and antiquarks (if these do exist). . v

In this paper we are going to describe a method” which could enable the
nonperturbative (or at least systematic perturbative) calculation of heavy quar-
konium energy-level shifts due to the gluon condensate. The problem will be shown
to lead to solving a secular equation for finding eigenvalues of an infinite matrix?
(see Sect. II.). The simplifications leading to the Voloshin-Leutwyler formula for
the shifts will be formulated at the end of Sect. II. Sect. IIT will comprise
conclusions and an outline of a possible use of the described method.

IL. DESCRIPTION OF THE METHOD

The system under study can be thought of as an isolated system consisting of the
heavy quark-antiquark (QQ) pair together with the gluonic degrees of freedom. In
the first approximation we can assume the pair to be immersed in a random vacuum
gauge field (see Fig. 1) characterized by a four-vector potential A%(x) (a=1,2, ...,
8). Any physical state has to be singlet and hence consists of the: Q0 pair in
a singlet or octet state, and of the surrounding gluon field which must correspond-
ingly be either in a singlet state (if the QQ pair is singlet) or in an octet one (if the
pair is octet). We shall denote the corresponding projectors on the singlet and octet
states as Ps, P, and I, I, in the QQ and gluon case, respectively.

If the quark mass m is large enough, the QQ bound state becomes essentially
Coulombic (see Eq. (6) below) and its characteristic radius is of the order of
r,~(ma,)™", while the characteristic period of the quark motion is of the order of
ty ~(maz)~. These values could be smaller than the (up to now not well known

P, s
o 4 g

DA similar, (though nonstationary) approach has been used by R. Meckbach (MPI Miinchen) for
extracting some information on the static quark-antiquark potential [15).

? Strictly speaking, the matrix elements themselves also depend on the eigenvalue that is looked for.
The precise meaning of this statement will become clear from Eq. (28). - o
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[12, 16]) mean scale R and period T of nonperturbative vacuum fluctuations, and
one could restrict oneself to the fields constant in time, and make use of the QCD
multipole expansion of the interaction of quarks with the constant gluon field.

Although the technique of calculation we shall use is in many respects similar to
that describing the QQ system in an external field”, the physics behind it is
different. What we consider is a coupled system consisting of a QQ pair and gluons
and the interaction is described in the long wavelength limit of gluonic excitations.
The system is closed and thus it has sharp energy levels.

Hg H,, H
B . ——————
S+>S Ae—A v L.
Io quark queork a “ ’
g 5 SR,
S Se—S | AE—A e i B
Q T-n gluon gluon Lot
Ko L] - . : S
backgiound field with g ! ) Ae—rA Se—A
<0l mh\ Fawv 10O#0 L m “ o . interaction interaction 1 .
- il s o B

Fig. 2. Illustration of how the total singlet Hamil-
tonian can be separated in two different ways: 1)
horizontally, according to which (QQ or gluon)
: degrees of freedom are acted upon by parts of the
Hamiltonian; 2) vertically, according to which
colour states are connected by parts-of the Hamil-
. woawa. .

Fig. 1.QQ vw:.. in a constant vacuum mm:wn field
- asketch.

.Hra Hamiltonian om..io &.:m.r& mwmﬁma oonmmm\mn._‘m‘om the OQ ,vm:. and-the <mn==E
gauge field can now.be separated into three.parts

éronm mm EE ~.~> ao :on mix, mEm_Q »na OQQ mnmnom

€79 Gince r, ~ t,a;! <1, ‘and one can ‘expect R ~ T for vacuum fluctuations; the condition ; <T~R i
most essential and determines the range of applicability of the present method. If ¢, ~ T; one should
take into account explicitly the retardation effects and the interaction could not be formally like ::: of
a QQ system in a ro:.ononoo:m Qno:_w_ :oE Q thank —v.,om <o_0mr_= mo—. an_Sm_N_:w a.:m vo:: 8
me). . &

Y We mroc_n also include E.Eoﬂo_. on the 83_ m.sm_on uz:n (of =_o i__o—n &ﬁSBV .;_m ‘will co no_.
simplicity omitted, but tacitly implied. 4 e
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while H' does

H' = PJI,HPAIT, + PAII.HPIT; . )

(Hereafter we shall adopt a shortened notation: PsIls = P; and Palla = Py; note
that P, is not an octet projector, but projects on the singlet system consisting of
a QQ-pair and gluon octet parts.) The same Hamiltonian can also be written in
a different separated form, namely {12] (see also Fig. 2)

m”:m~+:0+;=: Awu

where Hp is the Hamiltonian acting on dynamical variables of quarks, which for
very quarks takes the form g

_mo_vn,w_Al,_.fr!v w.+$A|»+wmv P, (6)

mo is the Hamiltonian for m_coEo mnmaam of freedom (whose energy spectrum will
be assumed to start from Nanov and H.. describes the interaction of quarkonium
with vacuum fluctuations®.

Using the multipole expansion [12, 13, 17] and neglecting higher terms H,.
consists of two parts [12]°

H,.. = Q°A%0)—d"-E*(0) 7N

(repeated indices are summed over), where

Q' =1 gr =3 gt +1), | ®)

* L gE'r= ali-m)r, | ©)

and t¢, t3 are SU(3) colour maaonwnonm HOn the quark and antiquark, respectively ; E*

is the chromoelectric field of the vacuum fluctuation. Since ¢* annihilates singlets,

and E° changes a singlet to an octet and an octet to a superposition of a singlet and
an octet, Hi. can be written as

H,. =[PsQ°A$(0) Ps— Psd®- E°(0) Ps] - P.d*- E*(0) P;— Pgd®- E*(0) P;.

: (10)

, ¥ The mavn_.ucon om En EE.E_SEE_ ~.~ into :o mc EE F is in some sense E&_g Eonn the
_Eo_.wonon ‘of quarks .with hard,-short-wavelength gluons is included in Ho and gives rise. to the
Coulombic interaction potential, while the long-wavelength gluonic fluctuations are contained in Eﬂ
Any interaction between both these types of gluons is ignored.: . i

9 The centre of mass of the QQ pair is assumed to be placed at the origin om Eo oooa.nnﬁ mﬁﬁa.
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Comparing (1), (5) and (10) one sees immediately the relation between the two
ways of separating the total singlet Hamiltonian into parts (Fig. 2)

H,=P,HyP, + P,H,P,, (11)
m>Hmm~.~O~um+WmN.~Q~uN+~uu~.himmq :Nv

and :
H'=PH,Ps+ P;H, P, = — Pid*- E*(0)Ps— Psd® - E*(0)P;. (13)

All relevant information on the QQ pair in the vacuum field could be extracted
from the complete Green function for the Hamiltonian H,

GE=H-B. . . (14

However, our knowledge of the QCD vacuum is rather poor and does not enable to
find a complete solution of the problem. A Iot of useful information could
nevertheless be obtained if we restricted our attention to the pure quarkonium”
Green function (i.e. the projection of the complete _Q,noou function on the colour
singlet quarkonium states, averaged over the gluonic vacuum)

Go(E)=P:(0,|(H—E)[0,)Ps . (15)

(10,) is the gluonic vacuum). Its poles, for example, correspond to n:.,E.wan:.

energy levels®.

The Green function Go(E) remains to be an operator, acting on colour singlet

quarkonium states. We shall now concentrate on deriving an operator equation

which it must obey.”

Using the well-known identity

(H-E)"'=(Hs—E)"—(H; —E)'(H-Hs)(H-E) "=

=(Hs—E)'~(Hs—E)'(H,+H')Y(H-E)™" ~ (16)

one can easily show that “ : o

GolE)=Po(0,|(Hs — E)™[0,) Py — (0, | P(Hs — E)~*P,H!Pu(H ~ E)*P,[0,)

7 Pure quarkonia consist of a singlet QQ pair plus the gluonic vacuum.

®.0Of course, poles of the pure quarkonium Green function are also poles of the complete Green .

function.: AE . e N D LR} PR
- A similar approach was used to solve the coupled

SRR

:ovw_amooonn_.oaa_.nonwngmonnxﬂaomumouQ.o.:ao»luAo_mtim‘!_cvvigno%&nolxﬂo»mnm
H; and H,.):as a perturbation).. .. ... .° o RN N R O
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: el uaioi in arn—.BQE:E by Eichten et.
al. [18). The quarkonium Green function Go(E) was also introduced by. Voloshin (Sect. III of Ref.:

where we utilized the fact that the gluonic vacuum is a color singlet .mSS. and
P,H, =0. This equation is illustrated in Figs. 3, 4a. A similar identity with Hs and

H, exchanged

(H-E)'=(Hs—E)"'—(Ha—E)'(Hs + H')(H — E)! (18)
can be used to express Ps(H — E)™'P; (see Eq. (17)) through P.(H—E)'P,,viz.
Py(H — E)"'P, = ~ Py(H, — E) 'P,H'P.(H— E)™'P,. (19)
R S
A H s
qa)
s s
e)

Fig. 3. Vocabulary of elements entering Egs. (17), (19), (20) and (22), and _umwm.. 4, .u“ a) oJBE.oS pure
quarkonium Green function; b) propagation of n:wn_noa_.ﬁ,u “,Em condensate with interaction ”.b i-:n«-.
gluonic quantum numbers are transferred from the quarkonium ».w n_.o condensate ~.> - w.‘ A* £ mnv.
, transitions occur) ; ¢) propagation of quarkonium and condensate in singlet %.28 (without interacting) ;
: d) the interaction of quarkonium with the condensate in .tr_n__ .m_conmn quantum numbers E...o
transferred ; €) propagation of singlet quarkonium without any Bno_.wnnwn with the ..uonman..mﬁ.o. (S, S%,
A* -denote the states of the gluonic background (gluonic vacuum, singlet n_.mon_n excitation, .octet
gluonic excitation, respectively), while § and A denote the QQ pair colour state (singlet and octet)).
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Inserting this into Eq. (17) we get (Fig. 4c)

Go(E)=Ps(Ho —E)'Ps +
+(0,|P(Hs — E)'P.H'P{(H, — E)'\P,H'P(H —~ E)"'P.|0,),
where use was also made of (0,|(Hs— E)'{0,) =(Ho— E)™".

Fig. 4. Diagrammatical illustration of steps in deriving the operator equation for the quarkonium
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function : a) Eq. (17); b) Eq. (18); ¢) Eq. (20).

(20)

Green

i
!
|
;
i
i
i
|
|
1

To further simplify this equation, one has to use some physical assumption on the
nature of the problem. We shall assume that in P, = PsIs

:mUH_OQVAOLA AMHV

Doing this we omit excited colour singlet states of the gauge field, i.e. we do not
care about the so-called gluonia. In fact we thus neglect the possible admixture of
gluonia to the QQ wave function. The reasons are twofold : first, this assumption
enables us to find a closed equation for Go(E) and it is interesting to explore its
consequences, and, second, we do not exclude gluons completely, we allow for the
emission of gluons with the corresponding transition of the QQ pair from a colour
singlet to an octet state. Thus, the assumption (21) does not destroy the possibility
of singlet < octet transitions that significantly change the quark-antiquark
interaction in quarkonia [12].

K(E)

Fig. 5. The closed operator equation for the pure quarkonium Green function (Eq. (22)).

Using (21) Eq. (20) changes to (see Fig. 5)

Go(E)= G$(E) + GS(E)K(E)Gao(E), (22)
where G$(E) is the Green function for a singlet Coulombic quarkonium
A 4
G$(E)=Ps(Ho—E)"'Ps;  PsHoPs=—"-—3% (23)

and the operator K(E) is
NAmVHFAcLEQAI\, —E)'P;H'|0, ) Ps. " (24)
The way how the assumption (21) simplifies Eq. (20) can simply be visualized by
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comparing Figs. 4c and 5. Neglecting possible singlet gluon excitations (S* in
Fig. 4c) at intermediate stages immediately leads to Eq. (24) (Fig. 5, each S* is
simple replaced by S, where S denotes the ground state of the system).

Having derived an (approximate) operator equation for the quarkonium Green
function Go(E) we can use it in a straightforward way for finding quarkonium
energy levels. Let €, and |[n) be eigenvalues and eigenstates of the singlet
(Coulombic) quarkonium Hamiltonian PsHoPs, and let ¥, (r) be the correspond-
ing wave functions. Then

(r'|Go(E)|r) = M @, (r'){n|Go(E)|r), (25)

where, using Eq. (22),

(nGa(B)r) = = [#3() + S (nIK(E)|m) (m|Go(B)),  (26)
or
3 (B - €)8un + Kun(E){m|Go(E)Ir) = = WH(), @7

m

with K,.(E)={n|K(E)|m). At a quarkonium energy (r'|Go(E)|r) must have
a pole; this is only possible if the infinite system of equations (27) has no solution
for E equal to quarkonium energies. This condition can formally be expressed in
the following form:

det [(E — €,)8um + Kum(E)]=0. (28)

This equation could provide a basis for a systematic calculation of quarkonium
energy level shifts due to the interaction with the vacuum gluon fields. Though the
task seems hopeless since one has to cope formally with an infinite determinant, we
do believe that a series of reasonable approximations ought to brinng Eq. (28) into
a manageable form.

To illustrate this point we shall show the approximations that lead to the
energy-level shifts calculated by Voloshin [12] and Leutwyler [13]. Let us,
however, first recall assumptions leading to their result. Aside from a natural
assumption of the invariance of the gluonic vacuum with respect to global colour
and space rotations they assume the following:

1) the interaction of the QQ pair with vacuum fluctuations is small so that’one
can use the quantum-mechanical second-order perturbation expression for energy
shifts;

2) energies of colour octet gluonic excitations are small compared to the
difference between colour octet and singlet quarkonium energies (this corresponds
to neglecting higher terms in the operator product expansion, see [19]).
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It is easy to see what must be done with Eq. (28) to recover the Voloshin—
Leutwyler formula. First, one has to neglect all non-diagonal terms of K..(E) and
replace E by its zeroth approximation, €,

Kol E) = Ko (€2)Orm - 29

This clearly corresponds to the first above-mentioned assumption. The shifts are
then simply

AE, = — K..(€,)= — {(n|{0,|H Ps(Has — €,)'PsH'|0, } ). (30)

wmooa&%w io_”_anm to the first order in g?, one retains only the quarkonium part of
the Hamiltonian H, (see Eq. (12)) and gets using Egs. (9) and (13)

AE, = — (0,|na.F7E}|0, ) (n|rE*Go“(e.)rE" |n) (31)
with G%" being analogous to G&’

Qm&"ﬁ»ﬁ*olmvlmu\: P,HoPy= ——+=—. AwNv
To show the relation of this assumption to that of Voloshin and Leutwyler we can

rewrite Ps(Ha — €,) 'P; in the following form

Py(Hy —€,.)'Ps=Pa N» _E.Mv ASW_QJ»:ON» + P,HsP4 +

mig,

+ PuHuPa =€) ) (nfIPu=Pa S, |m2) (m2|(PuHoPa +

+~U>m§m>+m§=|m:VI—_§MoVA=§>_~U>. Auuv

If we neglect PaH,.P. (otherwise higher than second-order terms in the gluon field
would be retained) and €., (that corresponds to the Voloshin—Leutwyler second
assumption), we get from Eq. (33)

mvm:&» Im..vlmvmﬂmw»hm.molmavl_m» AwAv
and arrive at Eq. (31). Using colour and rotation invariance of the gluonic vacuum
. 1
(04|EFE}|0) = —5¢ 8°8;(0,| FiF™10,) (35)
and
(singlet | £ (singlet operator) E*|singlet) me&. (36)

we see that (31) is identical to Voloshin’s form [12]
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AE,=n{(n|rG%"(e.)r|n), (37)

where 7 is proportional to the gluon condensate: n=(x*/18) (0| Fe, F|0).
k4

Thus, using approximations essentially identical to that of Voloshin and Leutwyler,
our expression (28) reproduces their resuit.

1. CONCLUSIONS

The method described in the present paper could provide a basis for a systematic
calculation of the shifts of heavy-quarkonium energy levels due to the gluon
condensate. An approximate operator equation for the pure-quarkonium Green
function has been derived using a single assumption that neglects the admixture of
gluonia in quarkonium states. We do not consider this simplification to be vitally
important since the essential feature of the model — the possibility for the
quark-antiquark pair to jump from singlet to octet states (and vice versa) with
simultaneous jumps of the gluonic background — has been retained. The operator
equation has then been used to derive an equation for finding quarkonium energy
levels. However, the latter cannot be solved without any further assumptions or
simplifications.

The most important task now remains to find and justify some approximation
which would: 1) reduce Eq. (28) to a manageable form; 2) enable to include some
of the effects omitted in the original work of Voloshin and Leutwyler. In fact this
should consist of two steps: 1) using reasonable information or assumptions on the
dynamics of gluons in the QCD vacuum (since the complete kernel K(E), Eq. (24),
contains also a generally non-negligible gluonic piece, see Eq. (12)); 2) truncating
the infinite determinant, Eq. (28). If this proves to be possible, the proposed
method should enable a more reliable calculation of the quarkonium level shifts
due to the gluon condensate.

Some clues to this problem will form the subject of a later publication.
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