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EFFECT OF MAGNETIC QUANTIZATION ON THE

PLASMA FREQUENCY IN DEGENERATE
KANE-TYPE SEMICONDUCTORS

BIMAHNE MATHUTHOTO KBAHTOBAHHSA HA JEHTMIOPOBCKYI0 YACTOTY
B BLIPOXIEHHBIX HOXYIIPOBONHHUKAX KEMHA

S.S. DE'), Calcutta

It has widely been demonstrated that the non-parabolicity of the energy bands significantly affects
the basic parameters of the semiconductors and influences the performances of the semiconductor
devices having Kane-type energy bands, particularly under the condition of carrier degeneracy [1, 2}.In
recent years, it has been shown [3, 4] that the speed of operation of modern switching semiconductor
devices and their performances at the device terminals are mainly governed by the degree of carrier
degeneracy present in these devices. It appears then that ‘these features would be affected significantly
by the effects of band non-parabolicity. Nevertheless, the interest for further investigations of the
different physical aspects of non-parabolic semiconductors is becoming increasingly important. One
such parameter is the plasma frequency in semiconductors which has been studied in literature under
different physical conditions {5, 6]. It may be mentioned that the numerical calculations presented there
are not generalized ones and based upon different approximations. In the present communication
a generalized expression of the plasma frequency in degenerate Kane-type semiconductors in the
presence of a quantizing magnetic field has been derived.

The plasma frequency of the electrons in semiconductors can in general be expressed [6] in the -
presence of magnetic quantization as

N, mm
tme S [ D

where co = — 2¢*B/h’s.6.%, e is the electronic charge, B is the quantizing magnetic field applied in the
k. direction, h= h/2x, h is the Planck constant, £ is the permittivity of the free space, & is the dielectric
constant of the semiconductor, E is the energy of the electron as measured from the edge of the
conduction band in the absence of the magnetic field and f(E) is the Fermi-Dirac factor. Incidentally,
the E—k relation of the electrons in the Kane-type semiconductors can be ouvnnmm& [7] under
magnetic quantization as
v 3 4
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where the different symbols are defined in the reference [7]. Thus, using (1) and (2) we get

Ewmnna M%m..h» ? :.‘.MQ +Qm.le= +W.v weo+w Qtw~+
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where E{ can be determined from the equation

Ei(1+oED=(n+ ) hootlguB and Lo=[1+24E]".
2 2

It may be stated that under the condition of extreme degeneracy 3F (E)/3E = — 6 (E — Ef), where 8 is
the Dirac delta function and Er is the Fermi energy in the presence of magnetic quantization as
measured from the edge of the conduction band when B =0. Thus (3) can be simplified as

wis=co M. [D.(Er)+ D-(E¢)) [1+ 20EF] @)

n=0

where

Do(Ex)= + B (1+aBe) - n +WV Esww guB.
Equation (4) is the generalized expression of plasma frequency under magnetic quantization in
degenerate Kane-type semiconductors. Thus for the computation of the above equation (4), a relation
between the electron concentration and the Fermi energy in the presence of magnetic quantization is
required. This in turn needs the corresponding expression for the density-of-states function. Using (2)
the density-of-states function can be expressed as

N(E)=rhwoo Naw* S,M.a_ ~
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Equation (5) leads to the expression of electron concentration, under the condition of extreme
degeneracy, as

»u\na H 5
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Using the appropriate equations we can determine the dependence of the plasma frequency on

a quantizing magnetic field in'degenerate Kane-type semiconductors having the electron concentration

given, provided the band gap and the effective mass at the band edge are known. Taking n—

Hg;-.Cd,T., as an example, E, and m* can be expressed [8—9] in terms of the alloy composition x as
follows:

Ey(x)={—-.303+1.73x+5.6x107* (1-2x) T+.25x] eV (7)
m*(x)=30 E,(x) ®

P being the interband momentum-matrix element, which is a very slowly varying function of x [8]. With

238

,

the help of the above expressions, the normalized plasma frequency (w,s/@pe), Wpo= Ewun\mam.ia as
a function of the inverse magnetic field has been computed in n —Hg, - Oa...m.. from 20.&22.2.: alloy
compositions taking P=1x107" eV ¢m [8], T=4.2 K and no= 3x Ga cm™, as m.roia in the m._m..m.. It
can be observed from the Fig. 1 that the plasma frequency is an oscillatory ?.:Q_o: of n—_.n QEE.:NEN
magnetic field. This is expected due to the dependence of the same on the Fermi energy, i?nr.o.ﬁ_:mﬁm
with the changing magnetic field. Moreover, this behaviour is expected onmly at nu_wasw@ low
temperatures, since the magnetic quantum effects are prominent at such temperatures. The periods of

Fig. 1. Plot of the dependence of the normalized
plasma frequency as a function of quantizing
magnetic field in n—Hg,-.Cd.T. at very low 1 | L
temperatures for two different alloy compositions 0 as 10 4 15
(no=3%10"* cm™). (1/B) Testa

oscillations being given by A (1/B)=(e/h), (8/3no V7)*? is only dependent on the carrier 8=8=Rmmm=
and is independent of other parameters of the semiconductor. Incidentally, the effects of electron spin
and collision-broadening have not been considered in obtaining the oscillatory plot. Moreover, :..n
effect of electron-electron interaction is also neglected in this analysis. Nevertheless, the c.mm_n
qualitative features of this analysis will not be altered even if the above improvements are taken into

account.
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