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PHONON INFLUENCE ON KINEMATIC
EXCITON LEVELS

BIMAHUE ®OHOHOB HA YPOBHH KMHEMATHYECKHMX 3KCHTOHOB

D. Lj. MIRJANIC"), Banja Luka
B. S. TOSIC?), Novi Sad

In the paper presented we shall analyse the kinematic interaction of Frenkel excitons in the presence
of phonons and determine the life-time of the kinematic exciton level at room temperature.

Kinematic exciton levels represent additional excitations in the exciton system, which occur due to
the kinematic exciton interaction. Taking into account that they appear in consequence of the correct
decoupling of the Green functions of the form <B*BB[B*B*B>», it is clear that they occur in
three-particles exciton processes and in such where two excitons, previously fused in a new, unstable
exciton with an approximately twice as high energy, disintegrate into two simple excitons after a certain
period of time. The energy quantum, being released in this fusion-disintegration process, represents
a kinematic excitation. An introduction to the kinematic exciton levels analysis is given in {1}, where the

multilevel exciton scheme is analysed. It is shown that such levels exist for all wave-vector values. Itis -

shown in [2] that the influence of kinematic excitations on luminescent and light absorption processes is
a considerable one, and that two levels having a final life-time of the order of 107" to 10™*s are
obtained. An exciton system with a simple lattice in a two-level scheme at low concentrations has been
discussed here, while in [3] we have analysed the exciton system at high concentrations and we obtained
one kinematic exciton level whose lifetime is of order 107 to 10™*s. A molecular crystal with
a complex lattice at low and high concentrations has been analysed in [4]. The number of kinematic
levels is equal to the number of normal exciton levels, and both are equal to the number of sublattices.
Nonconservation effects have not been taken into account in the analysis up to now. This has been done
in [5] showing that four kinematic levels, having a final lifetime of the order of 107" s correspond to
each of the normal exciton levels. Our purpose is to examine the influence of phonons on kinematic
exciton levels. We shall give for T=2300 K the final results during the life-time of those levels.

The analysis of the combined effect of the exciton-exciton and the exciton-phonon interaction on the
dielectrical properties of the crystal [6] proceeded from the total Hamiltonian in the form:

K= Ko + Ko+ Hom , )

containing optical and mechanical excitations, as well as their interaction. Further analysis required to
consider the exciton Green function

L.(t) = <P.(e}P2(0)> @

i.e. its Fourier transform Li«(w).
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Using standard two-time temperature Green functions formalism given in detail in {7] we obtained
the final expression for the exciton Green function
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+ng (@ —Ar—yt 0)7"]
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Here we wish to emphasize that the Wick theorem for the Bose operators has been strictly applied in
decoupling boson Green functions, and that contributions proportional to the exciton concentration

have been neglected. If we make in (2) a transition from the Pauli operators P and P* to the Bose
operators B and B* according to formulas from {8] taken in the approximation

P=B-B*BB, P*=B*—-B*B"B, 4)
we obtain the following expression
A Lus(t)~ G () + 2D () G4 (1) ©)
where -
Lu(t)= <P.()|Ps(0)> (6)

Ga(t)= <B.(1)|Bi(0)> ; Da(t)=<BI(t)|B:(0)>.

Here we have also neglected the terms proportional to the exciton concentration. After Fourier

" transformations of the type

Ra@=x3 [ " doFi(w) exp [ik (a — b) —iw] )
nuﬁ_.mmm»on (5) takes the form

L(@)=G@)+ 3 3, ﬁs dar dwz Ga(@1) Ga(®:) Gelws). ®)

. 2
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As for the boson Green functions G, they should be replaced by the value of the function L in the zerg
approximation according to the exciton-exciton interaction. This value is obtained from (3) for

Ai=A;=0. Instead of that we shall take both functions G in the zero approximation, according to the
exciton-exciton and the exciton-phonon interaction, i.e. in the form
G= 1 —imd(w—14) ©
w—2 : )

Using the expression (9) and the approximation
T+A i+ A:%(1- A - A)) '+ 0(A], A ALAL),
we can express the function L in the following way:
Li(w) = Gu(w) [1+ Au(k, w)] . (10)

where

2n(w— v
Ak, @)= a?_., cz_.m 3 % _ dw do: G(w) G(ws) X
* ) (11)

X O“_al.:+4~As +w - Euv.

If we equalize now the right-hand sides of the expression (3) and (10), we obtain the final expression
for the boson Green function Gi(w)
i 1 1

Gl =7 oA (k, @) 1+ Ao(k, 0) ~ Au(k, 0)— Aalk, @) @

According to the expression (12) we can determine normal exciton levels as well as kinematic exciton
levels in the presence of phonons. We obtain the normal exciton levels from the equation

w—A((k, w)=0, (13)
where kinematic exciton levels are obtained from the equation
1+ Ao(k, w)— Ai(k, w)— As(k, w)=0. (14)

Further analysis requires a series of simplifications in the expression (14). Those simplifications are
mainly obtained by neglecting the dependence of Ag, A, and A, on the wave vector, since summarizing
according to vectors in (3) leads to multiple singular integrals, whose theory has not been fully
developed up to now. Hence each phonon frequency is replaced by a Debye frequency and all

“non-parallel interactions”, i.e. all terms which are proportional to the product ql, are neglected. After
those simplifications the equation ( 14) obtains the form '

1~ (@ - 0a) [x (0) — oy ()] +i wlw ©70) (0~ wa) [wx (0)
m_eUEM —2 wWp
4My? (0 wa) ?Sl&uvnlsw

IA:U+N:Sx§le<a8_|?c|5Tcxacvl e;ov& -0
(w0~ ws — wp)? (0 — wa — wp)? -

- v (0)] - - - as)

o= +iw:.

From the imaginary part of the kinematic exciton level frequency we can determine the lifetime of
the kinematic exciton level. We solve the equation (15) in the approximation |w, — wa | < w; and take
the usual values from crystallooptics .
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M=2x10""g, v=10°cm/s, wp =1.1%10" Hz,

(16)
wsa=44x10"Hz, wx(0)=09x10"Hz, oy(0)=1.4x10"Hz.

According to (15) and (16) at T=300 K we obtain t=1.1 X 107'* 5. As we can see, we have a good
agreement with experimental results [9], but it should be mentioned that we mrmnx that ms‘.u: a cﬂ.ﬂon
agreement with experiment can be reached through a more sophisticated o%n.B—.T_u__o:os interaction
analysis, which will be the aim of our further research. This analysis, as well as previous ones ([1] to [5]),
contributes to the assertion that kinematic exciton levels, rather than normal exciton levels, appear and
are observed in the experiment.
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