AR TR

:

acta phys. slov. 34 (1 984), No. 4

Letters to the Editor

MEASUREMENT OF THERMAL DIFFUSIVITY
BY THE FLASH METHOD WITH A COAXIAL
SOURCE
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In the pulse method for measuring thermal diffusivity, described by Parker et al. in 1961 [1], the
front face of a small disc-shaped specimen is irradiated by an energy pulse of short duration and the
resultant temperature rise of the rear face is recorded. The thermal diffusivity of the sample can be
deduced from this time-temperature relation and the solution of the appropriate heat conduction
problem.

If: a) the heat pulse is uniform over the sample surface, b) there are no heat losses from the surface.
c) the heat pulse is instantaneous, d) the material properties are temperature and space independent,
the thermal diffucivity can be evaluated by the simple relation

a=0.139C/t, Q)

where [ is the sample thickness and t,,, is the experimentally obtained half time, ic. the time
corresponding to a rise in temperature to one half of the steady value.

If the absorbed energy flux on the sample front surface is not uniform (either due to a non-uniform
flux density of the beam or a non-uniform absorbance), the heat flow is two-dimensional and
one-dimensional mathematics no longer apply. Several investigators have studied the effects of
two-dimensional conduction occurring simultaneously with surface radiation heat loss [2—51.

Donaldson [3] presented the mathematical solution of the transient two-dimensional conduction
after an instantaneous energy pulse, whose diameter is less than that of the sample, has been applied to
the front surface. In this theoretical model the sample is represented by a thin isotropic slab infinite in
the radial direction. Based on this solution Donaldson and Taylor {4] measured thermal diffusivity in
the radial and the axial direction on isotropic specimens and Chu, Taylor and Donaldson [5] on
anisotropic ones.

The purpose of this paper was to find a solution of this problem with consideration to finite
fimensions of a disc-shaped sample.

The system of radial and axial coordinates and dimensions is illustrated in Fig. 1.

The general equation of heat conduction in cylindrical coordinates with a heat source function
q(r, @, z. 1) and no other source of sinks is
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where k is the thermal conductivity and a the diffusivity of the sample. a = k/ec, where g is the density
and ¢ the specific heat.

The terms in @ do not appear with axial symmetry and will be omitted.

Eor zero initial temperature, adiabatic boundary conditions and instantaneous source distribution
q(r.2)= a.ﬁl.au?u at £ =0 the solution of Eq. (2) is the product of the component solutions:

¢¢.. z, ) =P(r, NPz, 0. 3)
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Fig. 1. The system of coordinates in the specimen.

For the radial component W(r, t) we have

P 13¥ a0 _13¥ >0
mw“+n or k aot’ 0=r=b @
with boundary conditions:
w=0 at 1=0, )
L 4
S, =0 at r=b, )
q.(r) occurs at t=0. Q)]
For the axial component @(z, 1) we have
5o g _13e >0
32t k Caa 0SSl ®
with boundary conditions:
@ =0 at t=0, &)
3P _
Mm\o at z=0,z=1, (10)
q-(z) occurs at t=0. (11)

Equations (4) and (8) may be solved by using standard results for the Green functions for axial and
radial cases given by Carslaw and Jaeger {6l
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Fig- 2. Non-dimensional temperature in the centre of the rear face of the specimen. The numbers on the
curves are values of f (y = 0.65).

If b is the radius of the sample and R the radius of a planar, circular-shape source at { = 0, z=0and
0<R<b, then the temperature at >0, z=1, r=0 (centre of the rear face) is given by
QR?
oclb?

80,1, 0)= T #23 (-1 exp Tia;six an
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where Q is the amount of heat supplied per unit areas, J.(x) are Bessel functions of the first kind, and
are the positive roots of Ji(a)=0.
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Fig. 3. Non-dimensional temperature V versus at/l*. The numbers on the curves are values of y

(f=0.7).
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Dividing both sides of equation (11) by OR:/(oclb?®), we have for the non-dimensional temperature

<u_ 1423 (1) exp Alzuauz.:NLx (12)

> J(aR/b)
x— _+NNM_§-:.E€;

exp (—aat/b’) —

The numerical work is simplified by using the dimensionless parameters T =at/ I, y=1U/b,f=R/b.
For the non-dimensional temperature we now have

v=[t+23 -1y ew newn| 14237, M%Aw_v exp (~aiy)| (13

InFig.2 Vis plotted against at/ 12 for values 0.4; 0.6; 0.8; 1.0: of f and y =0.65. Deviations of the

curves for f<1 from ideal (f = 1) are evident. The calculated value of a increases with decreasing f and
using Eq. (1) can lead to substantial errors.
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Fig. 4. Non-dimensional temperature of the specimen in the case of R =0. The numbers on the curves
are the values of y.

In Fig. 3 values of V calculated from (13) for various values of y and f=0.7 are plotted against t.
Curve of V for y=2, f=0.7is practically identical with the ideal curve for f=1 and the effect of
non-uniform heating of the sample is negligible. From Eq. (1) the calculated value of a increases with

increasing y. If y<2(f< 1), the numerical factor in (1) must be corrected solving (13) for unknown ..z .

for appropriate f and y in the usual way. (Putting V= 0.5 and solving Eq. (13) for unknown 1., We have
for thermal diffusivity a = T2 02).

In the case of R=0 (the point instantaneous source at the centre of the front face of the sample)
using a similar*procedure for solving (4) and (8). we have
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Equation (14) is plotted in Fig. 4 for various y. The value of error from using (1) depends on the
geometry on the sample.
In the limiting case of R=>b the radial component is equal to | and we have

<n__+~MT:.. ﬁiimai_. (15)

Equation (15) corresponds to a result derived by Parker et al. .

Based on numerical analyses of Eqgs. (13) and (14) it can be shown that the effect of non-uniform
heating of the sample is negligible if y=2. This result corresponds to one given by Platunov and
Rykov [7]. If y<2, one can compute the value of T:2 using equations (13) and (14) for appropriate y
and f.
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