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A MODIFICATION OF BERGMANN’S METHOD
OF THE DECOMPOSITION NMR SPECTRA OF POLYMERS

J. UHRINY), J. MURINY), D. OLCAK"), Koice

Broad-line NMR spectra in solid polymers could often be decomposed into elemen-
tary components reflecting different kinds of mobility of macromolecular chains in
a polymer. For this purpose the Bergmann method is frequently used. The influence of
the modulation on the components is also considered in this method. This paper deals
with some numerical-mathematical problems of decomposition of broad-line NMR
spectra with the aim to spend up the convergence of the numerical method.

MOMUGUKANMA BEPTMAHOBCKOI'O METOIA PA3JTOXKEHUA
AMP-CIIEKTPOB INOJAUMEPOB

Hiupokne nueeidarsie SIMP-cieKTpsI TBEPABIX MOTMMEPOB Moryt GbITH 4acTo
passoXeHbl Ha dJIEMEHTapHBIE COCTABNAOIME, COOTBETCTBYIONMME PA3HLIM THIIAM MO~
BIDKHOCTH MaKPOMOJNEKYJIAPHBIX LENOYEK B NOMUMEPE. IIns 3TOM MENH 9aCTO MCAOIb~
ayerca MeTol Beprmana. PaccMOTPEBO Takke BIIMSIHE MORYJSIUMH HA COCTABJSAIOIME.
Kpowme Toro, B paGoTe HCCIERYETCA MAaTEMaTHICCKAs npofnema pa3noxeHHs MIHPOKUX
nuneiiyaTeix IIMP-cieKTpOB ¢ LENBIO YAYYHICHHS CXOIHMOCTH PANOB, HCTONBL3YEMbIX
B YHCJIEHHBIX pacyeTax.

I. INTRODUCTION

In studying the partially crystailine polymers by broadline proton NMR-measu-
rements one can frequently observe that the NMR spectrum changes its shape
when the temperature of the sample varies. Various kinds of molecular motion
(e.g. atomic groups, macromolecular chains and macromolecular segments of
different lengths) activated at different temperatures are responsible for changes in
the NMR spectra. Molecular mobility depends not only on temperature, but also
on the molecular composition of macromolecular chains and on their spatial
arrangement (crystalline and noncrystalline areas). If the molecular mobility in
individual structural areas differs, the NMR spectrum is a superposition of two or
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three NMR lines differing in intensities, widths and in shapes. These component
lines correspond to the resonating nuclei situated in regions with different
molecular mobility. Decomposition of the NMR spectra into elementary compo-
nents is very important for studying both molecular motion and structure (its
heterogeneity) of the polymer. The main information obtained from such analysis
is (1) relative number of resonating nuclei belonging to different regions (it is
derived from the areas under the component lines), (2) the parameters of the
individual lines such as the width, shape and the second moment, . give us
a possibility of modelling molecular motions in these regions.

The first line shape analysis of the partially crystalline polymer was carried out by
Wilson and Pake [1]. They observed a spectrum consisting of superimposed
broad and narrow resonance lines which they assigned to rigid crystalline and
mobile amorphous material, respectively. Many later authors have extended and
improved this method of separation [2—10, 14]. Recently the method elaborated
by Bergmann has frequently been used {6, 7]. In this paper we are dealing with
the problem of the decomposition of NMR spectra according to the Bergmann
method. Our intention is focused on numerical problems of the spectral analysis.

[I. THEORETICAL DESCRIPTION OF THE EFFECT
OF MODULATION ON THE LINE SHAPE

The absorption line is supposed to be in the form of the analytical function
Y (x'), where x' stands for the induction of magnetic field, which consists of two

parts: the static magnetic field x and the modulating field H cos wt. The shape of

the line is described by the function [7]:

Y (x')= Y (x + H cos wt). 1)
Extending this function to the Fourier series we obtain

Y (x + H cos 3n>~i+M. Au(x) cosnd, (#=o1) @
A.(x) H.Wm h. Y (x + H cos &) cos n# dd. ?3)

Taking into account a normalization of the absorption spectrum
~—|+aa Y(x)dx=1 @)
the normalizing mﬁon in eq. (3) has the form |
Q=g )
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If we develop the function Y (x + H cos #) into the Taylor series in point x and
A.(x) is divided by Q., we obtain

A.(x 12"
OA.. vuﬁ_ﬁuvuﬂmﬁ. ‘—o m<axv+ Y'(x)Hcos#+...+
1
+ Y H" cos™$ + H cos nit dit = ©)
R12° ("1 e
=20 b ﬂ%:ﬂ oomdwoom:.wm_w.

e.g. for small modulation amplitudes K.(x)=Y®™(x). In most events the first
derivation of the absorption signal is recorded, hence the function

y(x)=Ki(x), y(x)=2/nH % Y (x + H cos &) cos & di}
0

describes the first derivation of the absorption line with respect to the influence of
the modulation field H. After integration per partes one can obtain

y0)=2 [ ¥'(x + H cos #) sin’ do. )
T Jo

1. THE NUMERICAL METHOD OF THE DECOMPOSITION
OF THE SPECTRUM

We suppose the occurrence of three simple lines in the spectrum. There are
narrow, medium and broad lines. For the narrow line the Lorentzian lineshape was
taken

L1 ®)
) _

%qr Ak. mﬂv“

N
L

for the medium line the normalized product of the Gaussian and Lorentzian lines
(-]
exp| —\zm
P %V
2
1+ A.m.v
BY.
where R is the factor which serves the normalization

R =[nB exp (v)* erfc (V)] y=BL/BS

and the broad line is given by the experimental values at low temperature. The
presumed form of the line-shape enables a variation by the scaling factor s

Yor Ak, m_-,.n. m_,.uav =R va
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The resulting function which fits the experimental spectrum with regard to the
modulation field is

yite, py=2 [ o YiCn, B+ wouYe (n, B BE)+
. a1y
+ werYir (1, 5)} sin®@ m.w"m h f(n, p) sin’8 d8,

where 1 =x + H cos ¢ and the “yector” p substitutes the parameters of the lines

BY, BY, BY, s and the weight factors wr, wor and wir. The function f depends on

the weight factor in a linear way. ’

In our case the experimental spectrum is obtained in equidistant steps and all

experimental values are interpreted like values with an equal probability. Minimi-
zation of the @ function

@ “MU_ mM\\nAk: —uv - *mAk..v_nbk.. v Anmv

enables us to find the optimal vector p. The Y% in (12) denotes the experimental
line after normalization

+oo +o
_‘ Yo (x) dx = [xYe (x) H; xYi(x) dx=1 (13)
when the first term on the Lm—:-gna side is supposed to be zero.

For the minimization process a method similar to the Marquardt method [11]
was used, which is in fact a combination of the Newton method and the gradient
method.

Let ¥, = Yi(x:, p)— YE(x:). In the Hessian matrix ¢ of the function @

2 N :
e T 2§
9pa.dps i1 Pa Ds - 14)
& 'Y,
+2 .uM_ b 9pa9ps A

the second sum is neglected because the process of the numerical derivation
increases the errors {12] and a further reason for neglecting is the fact that the

matrix 9 represented only by the first sum is a positive definite matrix.
The gradient of the @ function is

z .
ge=2 > WD Ax. (15)
i=1 Pa .
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For each evaluation of ¥; in (14) and (15) it is necessary to compute the integral by
(11) and so the choice of the optimal numerical method of integration is essential

, 2 (" .
Yi(x, EHMh f(x + H cos #) sin’# df =

2 f(x+H)(1-¢) ,23

T 7 H|-

de.

This form of the integrand -suggests that the Chebyshew—Gauss method of
integration is usable [12]

Yi(r, p)=2 3, f(x+H) (1= +E, 17)

where & =cos(2i —1)n/2n and E is the error of the numerical integration. The
error can be expressed by i

. N: n
muwﬂ.uwnml_u?vf (18)

where g=f(x+Ht) (1-1%), te(-1, 1). For the Lorentz curve (narrow) the
2n-th derivation is

N=<F 2n ! .
; IAIV apr =0 sin[(2n +1)@],

de? = WM HN» + :ﬁ.:r:\n
Z denotes z=1/BY=(x + Ht)/pL and @ =arc tg BY/(x + Ht). After evaluating the
2n-th derivation

aN‘— _ 2 _ AN:VM m 2n-1
& Y+ ) (- = gy (g)
X Tuu -1) Ammw.u% NNu.._...HH sin(2n +2)p —4nt mx
sin(2n+ 1)@

" ko
ANN T Hv:n +(2n—1)sin ANBQVH_ 2
we obtain the estimation for error E(z — 0, ¢ — n/2)

E< mww m%v (19)

This means that the Chebyshev—Gauss method leads to a rapid convergence when
the modulation field is smaller than the line-width. If H~10" 8Y only 6—10 (or
less) points of the Chebyshev-Gauss method are sufficient.
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Newton’s method leads to convergence near. the minimum where the function
has a quadratic behaviour. The equations for correction are linear

4op=—g, Op=—%""g (20)

but in the region far from the minimum the correction-vector is taken co-linear
with the gradient and its orientation is antiparallel to that of the gradient

dp=—Ag, (21)

where A is a positive constant with an unknown value. A compromise between
Newton’s method and the steepest descent method is obtained when the matrix
@ +Af (F is unit matrix) substitutes the matrix 9. Then the equations for
corrections are

(4+19)dp=—g. (22)

For A =0 we have Newton’s method and for a 4 much bigger than the biggest
eigenvalue of ¥ the matrix equations (22) give the same corrections as equation
(21). For a A too big the vector of the corrections lies in a “resonable” direction,
but the length of this vector is small and that is why the progress in convergence is
slight. Indeed the length of the vector is

l=\Z (25) 2

where g’ = %*g. The matrix % is transformed into a diagonal form by the matrix
% and As are (positive) eigenvalues of the matrix 4. In our opinion it is useful to
substitute the vector of the correction 8p™ by the vector 8px.(1) where xa(A) is
an upward function under the conditions 1<y, (A)<K, (0)=1.

In our case the function x.(A) was taken in the form

’

:
icu._wM?S ne
f=1

m d(A) = Xn-1.{A)+ C if the Op{™ changes the sign in the n-th iteration in
comparison with 8p{*™ and x,.=1 if the sign is the same. The constant
C =min (A, K). For A0 e.g. in the region of the minimum x,(A)=1 and the
length of the corrections is determined by Newton’s method.

The criterium for the convergence is the condition @1 < @,, where @, is the
value (12) at the n-th iteration. Unlike the algorithm in [11] the following strategy
was suitable for our computations.

) A= <o,

mmv ».: "-w\\r:!- e:.:ve:
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Fig. 1. Decomposition of the NMR spectrum of
the copolymer 2-dimethyleneamine and 1-ethy-
lester of methacrylic acid at the temperature
225 K. The low temperature spectrum was mea-
sured at 100 K. Experimental points (--), calcu-
lated spectrum (——), narrow component
— Lorentzian (......), medium component
— Gauss-Lorentz curve {~.—-), low-temperature
spectrum (- — ). Weight factors are: wr.=0.20,
wor =0.26, wor=0.54, the parameters of the
spectrum are: BL=2.78G, pY=9.74G, BE=
5.78 G and s =0.916. The amplitude of modula-
tion B.=0.4 G.

NORMALIZED SIGNAL INTENSITY [ARB UNITS]

#>1 (8=1.3—1.5) r=3—>5 and step ii) is repeated until the event i is achieved.

The Hessian matrix is preserved in memory

function x.(A)=1 for all events ii). -

Fig. 2. Decomposition of the NMR spectrum of
a polypropylene sample (denoted as PP-17).
Temperature 340 K, low temperature spectrum
was measured at 195 K. Components are drawn
in the same manner as in Fig. 1. Parameters of the
spectra are: wi =0.19, wor =0.05, wer=0.75,
Br¥=1.06G, Br=85G, p¥=297G and s=
0.93. Modulation B, =0.35 G.

NORMALIZED SIGNAL INTENSITY [ARB. UNITS ]

because the ii) event may occur. The

]




The derivation by the weight factor was evaluated directly and the next
derivations in a numerical way. For our aims the rational approximation of the
erfc (y) [13] was suitable. This approximation reduced considerably the operation
time.

Computations were executed by a EC 1033 computer.

In Fig. 1 and 2 are illustrative examples. The function @ decreases from ~10~
to 107 during iterations.

The weight factor must obey the condition wy + wer + wer=1, hence the
number of independent parameters is lower, but we did not apply this condition
because all lines were normalized. If the sum of the weight factor is far from the
value 1, the process converges to a “non-physical” minimum. Small deviations
from the value 1 can occur in practice because the experimental and low-tempera-
ture spectra are normalized in the limited interval but the Lorentz curve and the
Gauss—Lorentz curve in the unlimited interval.
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