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PROBING PHASE TRANSITIONS
VIA ENERGETIC NUCLEAR oorEmEzm,

" B. rSO»Om_v. h. w. Ommsz.V. Budapest
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The possible effects of :6 ::Qmo:-n,c»n_n ﬁrumm »B:m_mo: on the dynamics of heavy -

L ion collisions are discussed. Recent experiments have shown that the formation of the .
., - quark phase can be nxvoﬁoa.,z.uﬁarn_omm. the comipressibility of the two-phase mixture
R 3:-»5&3.»3«@ low, thus the n:u_._n v_iwn Temains limited in gnr space ».E :Bo. and

:_n .o_umoEwc_om are not mn.o:m_v. wnon»nmt

ucgﬁﬁeg _e>uou..=.u MEPEXO/THI ITPH w.EE.EE.E.
. E Eﬁ..:run no«ﬁt.mﬁix . : S

m E&S.o omowﬁnuo._ﬁnuow:osﬁoo BIMSHHE KBAPK-HYKJIOHHBIX e»guri nepexonos
Ha JUHAMHKY CTOJKHOBEHU TAKEIBIX HOHOB. TMocnepuue IKCACPUMEHTI NOKA3LIBAIOT,
4TO MOXHO OXMAATH omuuuown_in _Bwvaowo.. Guu_._ HecMoTpsl Ha 3T0, CKMMAEMOCTh
nByxcasHOM cMecH OcTaeTCT OTHOCHTENLHO HU3KOM, ¥ TakuM 06pa3oM KBapKoBast ¢da3za
ocTaeTcs OpraHMYeHHOH KakK B =nooaum=o.ao Tax M BO ana.sa:: YTO He OYEHb CHABHO
.BIMSIET Ha 3HAaYCHUS HaOMIONAEMBIX.  ° :

Earonmr aro n:w_.w rvﬁogomnm has been _u—,o<oa very efficient:for oNﬁ_mEEm
wvarious experimental facts about the elementary particles and their interactions, it
is disappointing that free quarks have not been observed, so that one lacks the most
direct - proof.: Though .the: total | . ‘confinement 'is concordant: with~ Quantum
:Chronodynamics,’it.would beinevertheless mrm_.nw strnge to tell :—2 So mcmauoa

_of observed free quarks is an:evidence for the QCD. - - :
| o<02ro_omm. if the nouaano:H is complete, one m_Bv_w ‘cannot oca:b 9@ most
a:dﬂ nSaonoo.,moioﬁn. Eono is'the next best vo%&.rQ to'observe a Ano:mEmav
n:»nw plasma:If it contains. a :39&:» :Eucn_. of a:wnwm, then these; a&:._nm are
approximately free §2=P ,,,,,,
manifest themselves. Thus'it 5 ?.oB_mEm 8 _oo—n for: m:c»:oum in ?&.o& a'quark
v_me» B:wnx_ma m.moioﬁn, &m far.
E_Lo—, fusu B..n:EmSuoom r.w_._ &onm:_nm Ea\on ﬁawanw—dnom are; :nnnon
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The opinions in literature about the necessary conditions are not in agreement,

Tne pvnesemla Mondacess actimmntne (ot cmmmn I \J,:A:?J e Ratelat L?jd.»t wonltd ha
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ww a cca 100 O:/\\J:QOOD beam
cucrgy would be mc;CrE mz On the other hand, thermodynamical calculations

yield some (5—7) no for the (lower) transition density at a temperature T =0
[2——3], with a serious decrease at higher temperatures. This density is high enough,
but not unattainable in a two-fluid calculation of Amsden et al. 234 MeV maximal
temperature and (6—8) n, maximal density were obtained for a 2.1 GeV/nucleon
beam energy [4]. According to Ref. [3] at T=200 MeV the transition begins at
(3—4) no, while in one version of Chin’s calculation [2] the lower transition density
is even 0 above T =190 MeV.

While the first estimation is too high for the present heavy ion experiments, and
then only cosmic ray observations would be hopeful (with poorer statistics), in the
second case we would be near the production of the plasma in the recent
experiments, in fact, combining the results of Refs. [4] and [2] or {3], one gets that

. the transition should start in the 2.1 GeV experiménts in the very centre of the
compressed nuclear matter, and should continue for at least 1 x10~%s.

Here the difference between the predictions have been slightly exaggerated,
because it is explicitely stated in Ref. [1] that the transition may happen below
a 2 GeV/fm® energy density, and this value belongs to temperatures where the
plasma is already similar to an ideal gas. Nevertheless, there remains the fact that it
would be difficult to decide whether one can expect phase transition in recent

experiments or not, and in the best case these energies would be only just sufficient.

There is no clear evidence for phase transition in experiments (see Ref. [5]), and
there are only indications in cosmic ray observations [1], [6] at the (4—5)
TeV/nucleon. There is no obvious contradiction between these negative facts and
the more optimistic estimations. E.g. the strange particle production from the

_plasma has to be preceded by formation of s§ pairs, and this needs some 2 x 10~2* s
[7]. Another dubious point is whether the phase transition can be finished. N: amely,
it seems that phase transition is of first order [3], thus there is a density gap between
the phases (some 9—10 n, at T=0). Between the lower and upper transition
densities the matter is a mixture of the two phases, thus the system may spend
a considerable part of the whole reaction time in the mixture stage where the
thermodynamical (and thus also the hydrodynamical) behaviour of the matter is
more complicated than before or after the transition. Thus this stage of the
evolution needs special attention in the present m_EmzoP when the uomm_Ea beam
energies are in a delicate region. : : 4 .

In this paper we want. to discuss the thermodynamical cormSoE in 50
two-phase region. In Sect. II we present the conditions for a stable equilibrium, in
Sect. III an explicit way is given for calculating the Eon:oavSwEmmm_ data during
the transition. Sect. I'V discusses some consequence of the finite characteristic time
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calculated.

II. PHASE TRANSITION AND PHASE EQUILIBRIUM
IN A HEAVY ION COLLISION

There are at least two phase transitions which may lie in the experimentally
accessible range, namely the pion condensation [8], [9], and the transition into free
quarks. The questions arise: can we ‘use the continuum approach here, and if so,
how should we use it? .

In principle, the first question cannot be answered within the continuum
description. Nevertheless, one can list some essential assumptions which are used in
the formulation of this approach. First, the characteristic data should be continuous
functions of the space coordinates. This assumption may or may not be true even
for one phase. The continuum approach is, however, widely used for the descrip-
tion of relativistic heavy ion reactions [4, 5, 8] (and refs. therein). The applicability
of the approach is restricted to the highest masses and small impact parameters as
most recent experiments indicate. Secondly, the near-equilibrium thermodynamics
should be applicable to the system. Let us detail this.

We assume that the full thermodynamical information is given, i.e. we know that
actual values of the independent extensive densities (or the conjugate intensives),
and the form of the corresponding potential (e.g. we know the function of Eo
energy density o versus particle and entropy densities n, 5)

T(s,n)==
2]
Wi =g, | 2.1)
%, , % _
p(s,n)= $ 3¢ += n

where u and p are the chemical potential and pressure. However, these relations

are obtained from the assumption that the energy is also an extensive quantity, i.e.
it is additive for the subsystems [10]. This is true in equilibrium, if there are no
volume forces, but may not be true, e.g., far from the equilibrium.

The estimations yield that a collision satisfies the near-equilibrium conditions
below 500 MeV/nucleon [11]. Nevertheless, if -the equilibrium is unstable, the
system cannot remain in it. In this case even the data (n, s) begin to rapidly vary, or
the energy distribution of the particles differs essentially from the thermal one. In
both cases the thermodynamical approach has failed.
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Generally, if the specific data oﬁ the two phase differ, i.e. the phase transition is
of the first order (which is probably not the situation for pion condensation [9]), the
cquation of state has a region in which the equilibrium is not stable, i.e. where the
matrix

2
e (&)

g» Hlmmmwm»

(2.2)

. (where & stands for the independent extensive densities) is not positive definite
[10]. Thus generally the thermodynamical description with the original equation of
state is not self-consistent during the phase transition. Of course, we do not state
that the performed calculations give necessarily wrong results in this region,
however, the relevance of the results becomes awkward.

There is a process, which, if it happens, eliminates this problem, =»Bm_< the
formation of coexisting phases. For the sake of simplicity, let us first investigate the
special case s =0 (T =0). Then the only stability condition is

Om= >0, Ae.,mwwv . 2.3)

If this condition is not fulfilled between some n, and n,
0 (M) = Qun(m) =0>Qm(m<n<my), 2.4

then u and p have local maxima at n, and local minima at n,. Hence there are
values of u and similarly of p belonging to two different densities n;<n; and
n4>ny; and there is such a pair (n3, ny) for which both p(ns)=p(n;) and
1 (n3) = (ns), which are two equations for two unknown quantities n,, ns. Such
a system generally can be solved, in particular for all continua with first order
transition. The densities represent two phases in equilibrium. If n is slowly
increasing and the fluctuations are sufficiently large, then reaching n, the phase
with n4, existing as a fluctuation, does not vanish, and with increasing density the
relative weight of this second phase is increasing. Finally at n, the first phase
vanishes. The interactions guaranteeing the equilibrium of the phases are the same
as those ensuring the equilibrium within one phase. In this process the matter
escaped the ‘unstable state between n, and n.. Similarly, for T#0 during the
transition in each volume element the local state is a :.Ez:no of two stable v_..mmmm
n:mnnﬂonﬁna cw (n, 1) and AE, &v mo that

, I : G, : L : . .Njﬁ\m—u h_v" N;Aﬁﬁ&. MNV e T 4
| st w(m, s)=p(ns, s2) S @9
v?r ,rv p(ns, ,,.Nv . :

)

irna the mnam_ forms of the ?:n:onm T, p and p are determined by the equation
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of state. Since (2.5) yields three equations for four quantities, the coexisting phases
are point pairs on a line @ (n, s) =0 of the (n, 5) planc. The region confined by this

urve does not represent really existing states but the average data of the mixture.
The transition starts when the state reaches the boundary line, and ends when it
leaves it (Fig. 1).

P(n.s)=0

n

Fig. 1. The two-phase region on the (n, s) (particle density, entropy density) plane. The coexisting

phases are on the full line. The points within the two-phase region represent mixtures of states on the

borderline. The dashed line indicates the evolution of a system during compression. Arrows show the
corresponding points of coexisting phases.

The hydrodynamical equations of motion and the continuity equation describe
the behaviour of the average data. For any extensive density & the average value
has the form

E=q5+(1-q)&. (2.6a) :
n being an extensive density, it has the same form, whence q can be expressed as
Q "E . Am-mcv
—n

Of course, the (2.1) relations are not valid for the averages. One way to calculate
a hydrodynamical process through phase transition is to evaluate all thermodynam-
ical quantities in advance for all (r, s) pairs inside the phase transition region [12].

Now we show how a phase transition can be directly incorporated into the
hydrodynamical calculations.

118 >Z HN—-EO—.—_ WAY TO CALCULATE THE DYNAMICS
" OF A FIRST ORDER PHASE TRANSITION

u e

Consider a non-perfect (e.g. viscous) fluid as a model for the nuclear matter
during and after the collision. There are five hydrodynamical equations for n, o
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”n:a u' [4], [13], [14] of which three are equations of motion for the three
independent components of velocity; these three will not be discussed here. The
remaining two yield:

n+nu,=0 (3.1)
. . 7\
0+(e+plul,===nq AMV 3:2)

where "=u’3,, X denotes the energy production of the irreversible processes, and
u' is the four-velocity.
For one single phase, p is to be taken from eq. (2.1) and then (3.2) gives

T(s+sul)=X= ) 3.3)

(see Appendix).

For two phases, the equations are the simplest if we use n and T as variables.
Then the proper thermodynamical potential is the free energy density f, and,
instead of eqgs. (2.1) we have [13]

(3.4)

Now the energy density of the mixture is composed as

1
0= m=n)e(n, T)+(n —n)e(n, T)) (35)
T being the same for both phases. Substituting this form into eq. (3.2) one gets
D ’ ’ > T)- h.—. =
6(n, ny, nz, T) .€+3= z (3.6)

where p, being the same for both wrwwmw. can be o&n&ﬁm& from eq. (3.4) for any
phase.

Then egs. (2.5), (3.1) and (3.6) yield four equations for the four quantities n, n,,
n; and T. In order to get explicit equations for i, and T we take the time
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derivatives of eqs. 2.5) and perform the derivation in (3.6). The result is as follows

:_.
KE=w; E=|n, (3.7)
T

where

(n,—n)é, Az..lx_vuu — (n2— m)[(nz— n)va +(n— n)y2]
K= o ».I..QN m—|.u~
no — N0 51— 52+ mifi— nafa

w=[(n— )T '+ n'(ny— ny) (n2s1 — :Zb n, 0, 0]
0= frnn
B=fu (3.8)
y=fr
Sa=51— 52+ (n1—n2)Pa .

Thus the evolution of the constituents of the mixture is determined by r, which is
given by the velocity field through eq. (3.1). If we wanted to calculate the
hydrodynamical behaviour too, the velocity could be calculated from the ignored
components of the energy-momentum balance equation.

As we have seen, the transition starts at the curve

) @(n, T)=0. (3.9)

Thus one should start with the one-phase equations (3.1), (3.3); at the curve (3.9)
switch over to (3.7—8), and, when n = n,, take the one-phase equations again.

IV. ALTERNATIVE PATHS OF THE PHASE TRANSITION

" In the preceeding section we showed that the phase transition through coexisting
phases removes the thermodynamical instability from the path of the system. The
only necessary condition is that the “nuclei of condensation” of the second phase
be present due to fluctuations when the system arrives at the region of coexisting
phases. This condition is fulfilled if the fluctuations are sufficiently large or if the
thermodynamical state changes sufficiently slowly. .

The estimated fluctuation of an arbitraty thermodynamical quantity of
a one-component matter is given by the well-known thermodynamical formula [10]
in the variables n, s as

\

‘u
’ Abxxuv “i'llxwthz ..@H.l AcﬂﬁluAgv Ax..:@.uu - x.-Q.u=VN + xnuw AA..HV
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where AN is the number of the particles in the investigated cell and M is the matri
defined by eq. (2.2). It can be seen that the fluctuations become infinitely _mnmom
cither ‘@, or Det (M) vanishes, i.c. when the matrix M loses its positive
dcfiniteness, at the boundary of the unstable region. Of course, there the first order
formula breaks down. Nevertheless, the formula qualitatively shows that there the
fluctuations are great in the system.

Consider an equation of state with an unstable region. Enmm.ono can nm_oc_wﬁm
(AX)* (X =n, s or g) on the phase transition line ¢ (s, n) =0. From the details of

the interactions the condition can be determined that the fluctuations be sufficient-.

ly large for the formation of the second phase, so that there will be intervals on the
phase .?wnm:mo: line where the criterion is fulfilled (at high temperaturés or
entropies, near to the top of the curve if it has a top) and there will be sections
g.\:nno it is not fulfilled (at low temperatures). If the system reaches the curve in the
first interval, the phase transition will take place in the way described in the
preceding sections. Otherwise the system may cross the phase transition line ¢ in
a one-phase state. Can it follow an unstable path?

In order to achieve a reduction ad absurdum consider the case T =s =0. Then
the fluctuations vanish, and the system can reach an arbitrarily close proximity of
the unstable region. Let us assume that the system has just arrived at the boundary
of the unstable region, i.e. u.,=0. Then eq. (4.1) yields 0/0, thus now there might

be fluctuations. What is the situation when the system enters the unstable region,

and u.. becomes negative?

Assume that there are fluctuations in a fixed volume V containing matter of
average density n. The simplest fluctuation is the formation of two subsystems with
(Vi, m1) and (Va, ;). Then

E=o(m)Vi+o(n) V:
Vi+ V.=V 4.2)
mVi+n,Vo=nV

where Vi, .S_. n; and n, may change due to the fluctuations. Expanding E into the
Taylor series around n one obtains

mﬂ< Tuﬁzv +W :...A:v AH Ilﬁuv mn +4oamvw

d=n,~— ng | A#wv
W= <~| <— .

Thus if Hen <0, Snn.n.o energy in the fixed volume decreases for arbitrary (small)
fluctuations producing inhomogeneities, i.e. the local homogeneity cannot be
ensured after u.,=0. Unless the hydrodynamical change of n and s is very rapid
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compared to the local interactions (which is not probable below the 500 MeV/
/nucleon bombarding energy [11]), the unstable region is not realized, there is

a spontaneous separation into stable subsystems.

The most probable fluctuation is the one giving minimal energy. Minimizing

E/V, the result is that
=R (4.4)
P1=DP2

that is, we have obtained the condition for a phase coexistence. Thus the cold
matter can reach the coc:amq of the unstable region, but there it dissociates into
two coexisting phases, and hence the phase transition continues regularly.
Mutatis mutandis, the whole argument can be repeated for T>0. The two

thermodynamical variables governed by the balance equations are ¢ and n.
Consider the entropic equation of state s =s (0, n). Then the fluctuations can make
the entropy increase if the matrix

) @9

:almm..wmr, P @.: *
is not negative definite. Evaluating this condition, we arrive at the non-definiteness
of M. Thus reaching the unstable region, the local homogeneity breaks down.

Then, maximizing the entropy we have

MW Aw~<—+u~<~+ >A©—<_+©n<nl ©5+>A§—<~+ =»<~I=S+
A . .
FA(Vit Vam V)} =0 (4.8)

e> ..“IA@;.»« =>v.

whence we obtain Conds. (2.5), i.e. the system dissociates into two coexisting
phases again. Nevertheless, for T>0 this dissociation happens before the in-
stability : eq. (4.1) shows that passing to the unstable region the fluctuations pass to .
infinity, thus there will be some point where they are sufficiently large to produce
the second phase.

Although we have seen that a low temperature system reaches the coexisting
phases only somewhere between the phase transition line ¢ (s, n)=0 and the
boundary of the unstable.region, then the most probable state already fulfils
Conds. (2.5), thus the ordinary phase transition seems to be a modest approxima-
tion for the process. At the separation of phases there may be a jump in the
evolution, but the form of the variation principle (4.6) shows that there is not
a jump in either n or o.
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If one assumes that the motion of the system on the phase plane is very fast
compared to the velocities of the structural changes in the matter, then there is
a further possibility similar to the classical undercooled fluids: a sudden change
carrying the whole matter into the second phase, jumping over the unstable region
(sce path ¢ in Fig. 2). In the hydrodynamical flow this transition appears as a sharp
front, since the continuity of all parameters cannot be ensured.

Fig. 2. Specific energy o/n and chemical potential
p versus the baryon density n at the phase trans-
ition. The path labelled by a (full line) corres-
ponds to the equilibrium phase transition satisfy-
ing the Maxwell Rule. Small supercompression or
superexpansion is represented by curves b, while
n curves c¢ show the transition starting from the last
region region region , stable state. The latter two curves (b, ¢) do not
1 i represent complete equilibrium. While path a is
! i completely determined by the equilibrium con-
“ i ditions, the calculation of nonequilibrium evolu-
! | tion would need some additive information about
i Y | the. growth rate of the second phase (for such
\\m ; a . calculations see, e.g., Ref. [21]), and in case c the
\M|1 Rankine~Hugoniot equations should be used also
for the jumps. So here curves b and ¢ only
qualitatively represent the evolution of the
n system.

The theoretical description of this process is complicated because the Ran-
kine~Hugoniot relations and hydrodynamical equations have to be simultaneously
used. In Ref. [8], due to the special equation of state, the situation is more
fortunate than is could be in general. The unstable region is compressed into one
line and no energy and density changes occur. Then, due to the continuity equation,
the velocity is continuous too. The pressure has a jump in the front, but its effect on
the energy change can be ignored because of the nonrelativistic treatment. These
facts together gave the possibility to describe the process in nonrelativistic
continuum hydrodynamics without using the Rankine-Hugoniot equation. Such
a treatment is equivalent to the assumption that there is not enough time for
a regular phase transition.
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V. MICROSCOPIC COLLAPSE OR THE NEGATIVE PRESSURE

Some equations of state contain regions where p <0. (See e.g. Refs. [8, 12]).
Daniclewicz, who discussed the problem [12], concluded that such a state is
awkward but not contradictory. In fact such a state may be thermodynamically
stable in the sense of eq. (2.2). However, in this region the continuum is not
resistant to droplet formation. If p <0, the matter collapses in each element
(microscopic collapse [15]) till it reaches a state p>0. If a piece of matter is
collapsing faster than its neighbourhood, it becomes a droplet, and since the
pressure acts through a surface, becomes decoupled from the matter. Thus the
probable final state is a system of drops of positive pressures. This process (and its
final state) cannot be calculated by means of continuum equations. If the system
reaches the p <0 region, we can calculate but cannot expect that the calculated
states are realized in nature.

Generally the p <0 regions are preceded by thermodynamical instabilities, e.g.,
for van der Waals gases the isotherms of low temperature have such sections but
they are removed by the Maxwell Rule. Danielewicz also states that for his
equation of state the first part of the p <0 interval of the isotherms is unstable and
there is a phase transition. The case in Ref. [8] is slightly more complicated since
the equation of state does not contain any unstable region except a singular line
where the derivatives of o do not exist. However, if ¢ (s, n) were smoothed, the
state would become unstable in some region. If we assume that the system escapes
this instability by phase transition through coexisting phases, it escapes the p <0
states too, because in the stable phase before instability p>0 and thus in the
coexisting second phase, the pressure must be positive too.

VI. THE COMPRESSIBILITY OF THE MIXTURE

The compressibility of the matter in a real process can be measured by means of
the inverse of the ratio p/n (which is a generalization of the isothermal or adiabatic
compressibility). For a single phase one can calculate 7 and T from egs. (3.1—3.2)
and then the result for p is

. SY1a-(p+= .M.w

P=y :B\lﬁu+=v g " Am+=v T *
where a, B and y are defined in (3.8). For two phases i, 1, and T can be obtained
from eqs. (3.7—3.8) and then

(6.1)

2
» = Py
N = i
N R GRS CEl L CRUN IR
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n—n; ‘

A

If the irreversible processes can be neglected, then p is linear in #, so the inverse
effective compressibility p/n is fully determined by the momentary local ther-
modynamical data.

Naturally the compressibility of the mixture depends on the equations of state of -

both phases, and in order to calculate it, first it is necessary to calculate the location
of the phase transition on the phase plane. Nevertheless, even without detailed
calculations one can see the low temperature behaviour of the compressibility.
Namely, for most cases the free energy starts as a(n)+b (n)T?, and then, if =0,
the effective compressibility i/p is proportional to T2 (and it is infinite at T = 0).
On the other hand, eq. (6.2) indicates that at high temperatures the matter may
show quite substantial resistance against compression in spite of the phase
transition.

In order to get a more quantitative estimation for the experimental situation
E/A =2.1 GeV beam energy, let us take the temperature according to Ref. [4]
(cca. 200 MeV). Then the phase transition starts at n;=3no and ends at n,==6n,
[3], [5], while the chemical potential is cca. 1 GeV. The entropy of the quark
plasma can be calculated from these data. For an estimation one can use
a quadratic equation of state

f= HMAE, (n—neY’+nWo+F(n, T) 6.3)

in the nucleon phase, where Wo= —15.96 MeV and K =200 MeV [16], while F is
taken from the T approximation of nonrelativistic Fermi gases [17]. Then,
comparing the compressibilities just below and above ni, the result is that the first
is 300 erg™", while for the mixture the compressibility is the double of this value.
One can see that the mixture is still more compressible, but the difference is not too
great.

Such a result can be expected at this temperature because here the three
different characteristic energy parameters, i.e. the temperature T, the Fermi
energy, and the parameter K more or less coincide. A similar study of the
sensitivity of the compressibility in the cold nuclear equation of state led to the
conclusion that with the present accuracy the experimental determination of the
compressional part- of the equation of state is not promising [18]. There the
thermal and compressional pressures were compared with each other and the total
pressure did not react to the details of the equation of state. Here we see that
a (quasi) equilibrium phase transition does not cause an essential change in the
picture, at least at the discussed temperature.

In the present paper we have investigated the possibility of reaching the quark
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phase of matter in recent heavy ion experiments. Two fundamental assumptions
have been used: that the quark phase does exist, and that there is no other phase
between the nucleon and the quark one. Nevertheless, the first assumption follows
from the aim of the paper, and the second is not disproved, and is necessary anyway
for technical reasons because there are no calculations for the phase equilibrium
between a third phase and quarks.

We have seen that one cannot expect a high compressibility for the two-phase
mixture at the 2.1 GeV/nucleon beam energy, it remains almost the same after the
formation of the second phase. But then the one-phase calculation of Ref. [4]
remains more or less relevant even during the phase transition, thus the maximal
density accessible in the collision does not essentially increase. Comparing the
calculated maximal density of Ref. [4] with the phase diagram of the n-q system [3]
one can conclude that the phase transition can just be completed in the very centre,
at the moment of the maximal compression. But then the plasma stage is limited in
both space and time, thus one cannot expect very definite manifestations of its
existence at this energy.

Also we can conclude that there are necessary full 3-dimensional dynamical
calculations including viscosity, heat conduction and final fragment formation
effects [19], and a theoretical evaluation of more sensitive observables as two
— and more — particle correlations [20] with their accurate measurements, in
order to gain definite information on the equation of state. This is obviously
a formidable task, but the prize is worth the effort.

APPENDIX
THE IRREVERSIBLE PROCESSES

Consider a m:mérwmo fluid with the independent extensive densities # and s. The
balance equations yield:

%=0 (A.1)
(nu"),=0 (A2)

The energy momentum tensor can be written as

Hmknﬁﬁvl_!ﬁv:..:k +“Q-.k+a..=—. +Qw=..+ﬂ;.k A> uv

uu=-1,qu=1u=0 )
where g is the heat flux and 7* stands for the viscous stresses. Both extra terms
come from irreversible processes. Three components of (A.1) determine the three
independent components of the four velocity u'; the fourth one and (A.2) govern
the extensive densities:
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. [8] Stécker, H., Maruhn, J., Greiner, W.: Phys. Lett. 81 B (1979), 303.
n+nu’,=0. (A.5) [9] Ruck, V., Gyulassy, M., Greiner, W.: Z. Phys. A 277 (1976), 391.
i S i 3 - s . 3 [10] Ehlers, J.: Survey of general relativity theory. in: Relativity, Astrophysics and Cosmology, ed.
Sifice [ 152 fumction of & auds, ifs derivabig is : Israel, W., D. Reidel Publ. Co. Dordrecht—Boston, 1973.
' 0 =045+ 0 =T5+pn A>.mv [11] Amsden, A. A, Harlow, F. H., Nix, J. R.: Phys. Rev. C 15 (1977), 2059.
. [12] Danielewicz, P.: Nucl. Phys. A 314 (1979), 465.
and then (A.4) gives : , [13] Lukécs, B.: KFKI-1978-82, Report 1978.
) [14] Csernai, L. P, Barz, H. W.: Z. Phys. A 296 (1980), 173.
H.A.m +sul)=-qL+qe.ouu’ — 17U, A>..Nv {15) Harrison, B. K., Thorne, K. S., Wakano, M, Wheeler, J. A.: Gravitation Theory and
’ In the si lest y . ’ Gravitational Collapse, Chicago Univ. Press, 1964.
1 the simplest approximation (16] Stocker, H., Maruhn, J., Greiner, W.: Z. Phys. A 290 (1979), 297.
Q.. =0 [17] Landau, L. D,, Lifshic, E. M.: Statistical Physics. Nauka, Moscow 1954.
) ) ) ] . A>.wv [18] Stécker, H., Gyulassy, M., Boguta, J.: Phys. Lett. 103 B (1981), 269.
™= -2 (u®P + uul®) - n'(g™ + u'u*)u, [19] Stécker, H. et al.: Phys. Rev. Lett. 47 (1981), 1807; Kapusta, J. L, Strottmann, D.: Phys.
_ Rev. C 23 (1981), 1282.

and thus : [20] Csernai, L. P., Greiner, W.: Phys. Lett. 99 B (1981), 85; Csernai, L. P, et al.: Phys. Rev.
< - ; . 4 : C 25 (1982), 2482.
AT r;s r;s LY N 0 r ry2
T(s+sul)=n(u" u, .+ u"u, +uvuiu.)+nu,) (A.9) . (21} Csernai, L. P., Lukécs, B.: Phys. Lett. 132 B (1983), 295.
Neglecting the shear viscosity or restricting ourselves to one-dimensional flow only Received May 17th, 1983
the last term remains: , Revised version received August 24th, 1983
. n\?
T(+sul)=7n' AMV : (A.10)

If the heat flux does not vanish, then the entropy flux has the form [10}

i i H i
s'=su +m.,a (A.11)

with the source

1
st = -T {q"(T.+v'u,. )+ t7u,,}. (A.12)

Thus the bracketed term has to be negative semidefinite, which is a thermodynami-
cal constraint on the transport laws.
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