THE DEFORMATION OF THE ENERGY SPECTRA OF THE 'He AND 'He IONS IN THE ENERGY REGION OF ~1 MeV/nucl

M. SLIVKA¹), Košice, L. KOCHAROV²), Leningrad

In this paper calculations of energy spectra of particles deformation were made, during their traverse through the solar plasma, due to Coulomb losses, for cases of direct and diffuse propagation of these particles. Calculated ${}^{3}\text{He}/{}^{4}\text{He}$ ratios were compared with experimentally measured ones, in the energy region of $E \sim 1 \text{ MeV/nucl}$ in ${}^{3}\text{He}$ — rich solar particle events. Further, it was shown that calculated parameters of the solar plasma correspond to the solar corona.

ИСКАЖЕНИЕ ЭНЕРГЕТИЧЕСКИХ СПЕКТРОВ ИОНОВ ³Не И ⁴Не В ОБЛАСТИ ЭНЕРГИИ ~1 МэВ/в.

В работе были сделаны расчёты искажения энергетических спектров ионов, проходящих через солнечную плазму, в следствие кулоновских потерь, для случаев их прямого и диффузного распространения. Проведено сравнение результатов этих расчётов с наблюдательными данными в области энергии ~1 МэВ/н. в богатых регием-3 событиях. Далее показано, что вычисленные параметры солнечной плазмы соответствуют корональным.

I. INTRODUCTION

The problem of solar flares enriched in ³He has been intensively discussed during the last ten years. A catalogue containing 50 flares enriched in helium-3 has already been compiled [1]. The analysis of ³He-rich solar flares recorded by a number of scientific groups using different experimental instruments and satellites clearly shows that solar cosmic rays enriched in helium-3 are a reliably established experimental fact.

^{&#}x27;) Institute of Experimental Physics, Slovak Academy of Sciences, Solovjevova 47, 040 01 KOŠICE,

Czechoslovakia.

2) A. F. Ioffe Physico-Technical Institute, Academy of Sciences of the USSR, LENINGRAD, K-21, USSR.

to a few tens MeV per nucl. The ratio of ³He and ⁴He ions ³He/⁴He is about two to four orders higher than that in the solar wind. protons and alpha-particle flows, in a relatively wide energetic interval from a few These events are characterized by an anomalous high flow of ³He, compared to

cyclotron frequency occurs. acceleration, have been proposed and developed [2-5]. The first mechanism, by ions. In the other mechanism, proposed by L. A. Fisk [3], ³He heating at proposed by L. G. Kocharov [4], is based on the induced scattering of plasmons mechanisms of helium isotope separation, due to plasma effects during solar flare plasma effects in the solar atmosphere is being developed intensively. Two possible restricts the number of possible hypotheses. Nowadays the possibility based on A high enrichment of ³He relative to alpha-particles and protons considerably

atmosphere. In paper [6] there has been proposed the geometry of the acceleration prove or disprove the above model is the 3He/4He ratio to the energy of the ions ion-sound turbulence, based on the Kocharov model [4]. One of the facts that can region in ³He-rich solar flares owing to the interaction between particles and investigate these flares completely in connection with other phenomena in the solar behaviour in the energy region of $\sim 1 \text{ MeV/nucl.}$ The present-day knowledge of ³He-rich solar flares shows that it is necessary to

a power law with the power spectral index γ . In the following we will discuss two solar atmosphere provided that the energy spectrum of these ions at the source is plasma [8]: cases of spectrum deformation of ions which had traversed through the solar calculate the energetic spectra of ³He and ⁴He ions after their transition through the calculations we took into consideration only the first mechanism. Our aim was to clear that both these mechanisms work independently of each other. In the next adiabatic cooling of solar energy particles in their course from Sun to Earth [9]. It is ³He/⁴He with energy will be greater. According to the present-day notion the fold ions pass, is greater than that through which the 'He ions pass, the increase of geometry of the acceleration region, the thickness of matter, through which the ³He decrease of energy. If, owing to the character of propagation and owing to the higher energies in comparison with the spectrum of helium-4 and then the ratio of deformation depends on the ion charge Z and the mass number A as Z/\sqrt{A} . It in the energy spectra of individual ions may be caused either due to the ionization these ions ³He/⁴He will decrease at an energy about ~1 MeV/nucl with the follows that the energy spectrum of helium-3 will be deformed in the region of losses during the transition of these ions across the solar plasma [8] or due to the In papers [7-8] it was pointed out that the energy spectrum of the ion

- a) The case of directly escaped particles from the region with $n_e \ge 10^{17} \,\mathrm{m}^{-3}$. b) The case of the diffuse propagation of particles in the region with $n_e \sim$

$_{\star}$ II. DEFORMATION OF THE ENERGY SPECTRA OF IONS IN CASE OF THEIR DIRECTLY ESCAPE DUE TO COULOMB LOSSES IN THE SOLAR PLASMA

of particles, described by the expression: which had traversed the solar plasma, for a various regime of their propagation. In the case of directly escape we assume that the deformation of initial power spectra In paper [8] there was discussed the deformation of the energy spectra of ions

$$\varphi(x_i, y_i = 0) = Bx_i^{-2\gamma+1}$$
 (1)

of particles, having the velocity x_i , after traversing the way y_i has the form of ~ 1 MeV/nucl, because of their propagation through the solar plasma. The flux where x_i is the velocity of particles divided by $\sqrt{2T_e/m_e}$ (T_e and m_e are electron particles through the solar plasma, and B is a constant, occurs in the energy region temperature and mass, respectively, T, is in energy units), y, is the way traversed by

$$\varphi(x_i, y_i) = \frac{x_i F(x_0)}{F(x_i) x_0} B x_0^{-2\gamma+1}$$
 (2)

where x_0 is the velocity of these particles, which traversing the way y_i will have the velocity x_i , i.e. we have

$$y_i = \int_{x_i}^{x_0} \frac{x}{F(x)} dx \tag{3}$$

 $F(x_i)$ is the strength of friction acting on the mass unit in the form

$$F(x_i) = \frac{Z^2}{A} KG(x_i)$$
 (4)

we will take equal to one in the following calculations [8], A, Z are the mass charge of the electron, n_{ϵ} is electron density, Λ is the Coulomb logarithm), which where K is a constant, $K = 4\pi n_e e^4/m_p T_e \Lambda^{-1}$ (m_p is the mass of the proton, e is the number and the charge of ions and $G(x_i)$ is the function defined by the relationship

$$G(x_i) = \frac{\operatorname{erf}(x_i) - x_i \frac{d}{dx_i} \operatorname{erf}(x_i)}{2x_i^2}.$$
 (5)

solar plasma y_i. The initial power spectrum is then deformed because of Coulomb initial spectra in the form of (1), after their having traversed the thickness of the Expression (2) describes the energy spectrum of particles having the velocity x_i , losses. From the distance y, we can calculate the real thickness of the solar plasma

$$N \sim 2.5 \times 10^{-20} x_e^4 y_i$$
 (6)

where $x_e = \sqrt{T_e/m_e}$ is the thermal velocity of electrons.

With the help of the program MARYS for computer EC 1040 there will be calculated energy spectra of the ions of helium-3 and helium-4 for power spectral indices $\gamma \in \langle 2.0, 6.0 \rangle$, for various velocities of x_i . In Fig. 1 energy spectra of ³He ions are shown, which arise from the initial power spectrum with power spectral index $\gamma = 3.0$, for various thicknesses of the solar atmosphere y_i . The energy of the ions E is in units $E_1 = 6.3 \ m_p x_e^2$, where m_p is the mass of protons. A similar energy spectrum is in Fig. 2 for ⁴He ions.

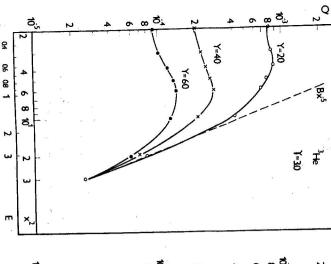


Fig. 1. The deformation of the initial power law energy spectrum of 3 He ions after its traversing various thicknesses of the solar atmosphere $Y \equiv y_i$, for the case of the direct escape of particles on the solar plasma (x is velocity and E is energy of ions in units of $E_1 = 6.3 \, m_{\mu} x_{\mu}^2$, where m_{μ} is mass of protons and x, is thermal electron velocity).

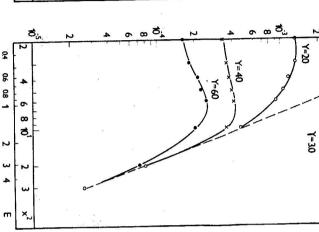


Fig. 2. The deformation of the initial power law energy spectrum of 'He ions after its traversing various thicknesses of the solar atmosphere $Y \equiv y_i$, for the case of the direct escape of particles in the solar plasma $(x \text{ is velocity and } E \text{ is energy of ions in units of } E_i = 6.3 \, m_p x_i^2$, where m_p is mass of protons and x_i is thermal electron velocity).

In Fig. 3 energy spectra of ³He and ⁴He ions for $\gamma = 3.0$ are compared. In this figure also the energy dependence of ³He and ⁴He fluxes ³He/⁴He is presented. For each of these spectra the critical thickness of the solar plasma N^{krit} were determined, as like as the way, after traversing which the flux of particles increases

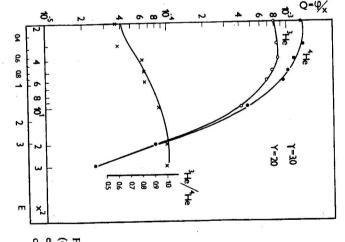


Fig. 3. The comparison of energy spectra of ³He (\odot) and ⁴He (\odot) ions, for $\gamma = 3$ and Y = 20. The energy dependence of ³He/⁴He ratio (\times) for the case of direct escape of particles in the solar plasma (Energy E is in units of E.).

twice with the charge of their energy from unit energy E_1 to $0.8~E_1$. Values of these critical thicknesses are presented in Table 1 for individual power spectral indices of the initial power law spectra and for ³He and ⁴He ions.

0

Critical thickness of ³He and ⁴He ions $N_{H_3}^{krt}$ and $N_{H_4}^{krt}$ (in units x_*^* m⁻², where x_* is the thermal velocity of electrons) as the function of the power spectral index γ , for the case of direct escape of ions in the solar plasma.

Table 1

マ	N _{He3} [x ⁴ , m ⁻²]	N ^{tot} _{tet} [x ⁺ _e m ⁻²]
2	6.25×10 ⁻¹⁹	7.50×10^{-19}
. ـ ـ · ۱ در	4.50×10^{-19}	6.25×10^{-19}
L (5.00×10 ⁻¹⁹	6.25×10 ⁻¹⁹
نہ .	5.00×10^{-19}	6.75×10 ⁻¹⁹
6	4.50×10^{-19}	6.25×10^{-19}

In Fig. 4 there are drawn experimental measured energy spectra of ³He and ⁴He ions and the pertinent energy dependence of ³He/⁴He ratio for the ³He-rich event of 5th—10th May 1974, measured on the satellite IMP-8 [10]. For all power indices of initial energy spectra $N_{\text{He}_3}^{krit}$ is always smaller than $N_{\text{He}_4}^{krit}$.

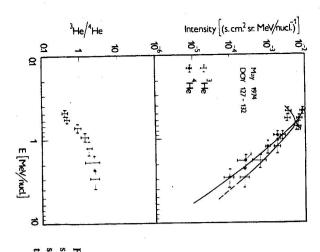
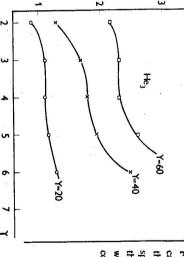


Fig. 4. Energy spectra of ³He and ⁴He ions measured on the satellite IMP-8, for the ³He-rich solar event of 5th to 10th May, 1974. In the lower tail of this figure the energy dependence of the ³He/⁴He ratio is shown [10].


If the energy near which is the distorted energy spectrum half the size in comparison to undistorted one, is denoted by E_2 , then the effect of deformation on the energy spectrum of ³He ions can be presented by the graphic dependence $E_2 = f(\gamma)$, for various thicknesses of the solar atmosphere $y_i \equiv Y$, which is presented in Fig. 5.

0

On the basis of these calculations we can make the following conclusions:

A. The deformation of energy spectra of particles after their traversing the same thickness of the solar atmosphere, is for the ³He ions greater than for the ⁴He ions, which is in agreement with the experimental data [10].

B. For $T_* = 10^6$ K the ³He/⁴He ratio decreases with the decrease of energy, beginning with the energy 0.3 MeV/nucl, in the region \sim 2 MeV/nucl this ratio approaches one and in the region >2 MeV/nucl its constant, equal to one. A similar dependence of this ratio was obtained by Möbi us et al. [10] for the same ³He-rich solar flares (see Fig. 4).

E₂

Fig. 5. The effect of spectrum deformation for the case of direct escape of particles as a function of the power spectral index of the initial power law spectrum γ , after traversing various thicknesses of the solar atmosphere Y. E_2 is the energy for which distorted energy spectrum is half as small in comparison to the undistorted one. (Energy E_2 is in units of E_1).

III. DEFORMATION OF THE ENERGY SPECTRA OF IONS THROUGH DIFFUSE PROPAGATION DUE TO COULOMB LOSSES IN THE SOLAR PLASMA

In addition to the direct propagation of ions in the plasma, in which the resulting effect of deformation of their energy spectra depends on their charge and mass number like Z^2/A there exist two other possible alternatives. If the deformation of energy spectrum is connected with the acceleration of particles in their interaction with magneto-hydrodynamic turbulence [11], the resulting effect of their spectra deformation depends on the Z/A ratio. When the turbulence magnifies the distance traversed by particles and changes in these particles are caused only by Coulomb losses, all the deformation effect is dependent on $(Z^2/A)(Z/A)^{2-\nu}$, where ν is a turbulence spectral index [8]. For this case it was shown in [8] that initial power law spectrum will have the following form after its deformation

$$\bar{\phi}(x_i, y_i) = \int \frac{D(x_i)}{F(x_i)} \frac{1}{\sqrt{\pi l^2}} \frac{y_i}{4l^2} \exp{-\left[\frac{y_i^2}{4l^2}\right]} x_0^{-2\gamma+1} dx_0 \tag{7}$$

where x_i is the relative velocity of ions, y_i is the space coordinate, x_0 is the velocity of ions at the point with the coordinate $y_0 = 0$ (at the time t = 0), γ is the power spectral index of the initial power law spectra, according to expression (1),

$$l^2 = \int_{x_l}^{x_0} D(x)/F(x) dx,$$

D(x) is the diffusion coefficient along the magnetic field, which may be expressed by [12]

$$D(x_i) = (Z/A)^{\nu-2} x_i^{3-\nu} d, \tag{8}$$

where d, is the diffusion coefficient for $x_i = 1$ and Z = A = 1, which in the following calculations is taken equal to one.

The real thickness of the solar plasma N is connected with the parameter y_i by the following relation

$$N = y_i \sqrt{\frac{d_i m_i m_p x_e^3 \sqrt{2} n_e}{4\pi e^4 \Lambda}}$$
 (9)

where m_t , m_p are masses of electrons and protons, $\Lambda = 20$, n_t is the electron density, which is constant throughout the region.

With the help of the program DUBLEMAR for the computer EC 1040 there will be calculated energy spectra of the ions of helium-3 and helium-4 for power spectral indices of the initial power law energy spectra $\gamma \in (2, 6)$, for four various values of turbulence spectral indices ($v_1 = 1.5$, $v_2 = 2.0$, $v_3 = 2.5$, $v_4 = 3.0$) and various thicknesses of the solar atmosphere y_i . In Fig. 6 energy spectra of ³He and ⁴He ions are compared, which arose by the deformation of the initial power law spectrum with the power index $\gamma = 3.0$, for the turbulence spectral index $\nu = 1.5$, after their traversing the thickness of the solar atmosphere $y_i = 14$. This figure

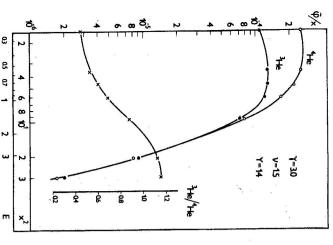


Fig. 6. The comparison of energy spectra of ³He (Φ) and ⁴He (O) ions for γ = 3.0, ν = 1.5 and Y ≡ y₁ = 14. The energy dependence of the ³He//⁴He ratio (X) for the case of diffuse propagation of particles in the solar plasma (x is velocity of ions, E is energy of ions in units of E₁).

presents also the energy dependence of the 3 He/ 4 He ratio. Fig. 7 shows energy dependence of the 3 He/ 4 He ratio for various values of the index ν . Values of critical thickness $Y_{\rm He_a}^{ket}$ and $Y_{\rm He_a}^{ket}$ of 3 He and 4 He ions are presented in Table 2 for various values of γ and ν .

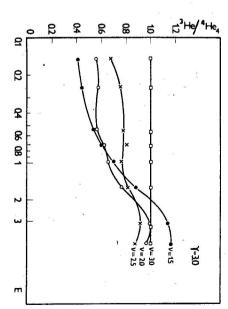


Fig. 7. The energy dependence of the 3 He/ 4 He ratio for $\gamma=3$ and $\nu=1.5$ (\bullet), $\nu=2.0$ (\circ), $\nu=2.5$ (\times) and for $\nu=3.0$ (\square) (Energy E is in units of E₁).

Another picture of this deformation of energy spectra can be obtained on the basis of values of E_{n_i} as the function traversed thickness of the solar atmosphere y_i dependence, for various values of the power spectral index of the initial energy spectra γ . E_{n_i} indicates the energy near which the distorted energy spectrum is n_i -times smaller in comparison with the undistorted one. These dependences are for 'He ions shown in Fig. 8 for $n_i = 2$, 5, 10 and 20 and for the turbulence spectral index $\nu = 2$. It shows that these dependences have a universal character, because in the case of 'He ions (Z = 2, A = 4) the deformation of the energy spectrum is independent of the charge Z and the mass number A and because for these ions we

Table 2 Critical thickness of 3 He and 4 He ions Y^{krt}_{Rq} and Y^{krt}_{Rq} as the function of the power spectral index for various turbulence spectral indices v and for the case of diffuse propagation of ions in the solar plasma.

:	v = 1.5	1.5	v=2.0	2.0	v=2.5	2.5	v=3.0	3.0
	Y 14.13	Y	Y 14.5	Yka	Y 14.5	Yht	Yhei	Y
2	16	20	12	12	10	=	10	10
w	15	18	12	14	∞	10	œ	œ
4	15	18	11	12	∞	10	∞	∞
S	15	18	11	12		10	6	6

same distortion as helium-4 one, by the following expression calculate the thickness of the solar atmosphere yi, which traversed this ion, for the number A we can for the arbitrary choice of the turbulence spectral index to have $(Z^2/A)(Z/A)^{2-\nu}=1$. Then for the arbitrary ion with charge Z and mass

$$y_i = y_{He_A} \sqrt{(Z^2/A)(Z/A)^{2-\gamma}}$$
 (10)

used in expression (10). where y_{He4} is the thickness of the solar atmosphere traversed by 'He ions. From E_{5} , E_{10} and E_{20} and construct the deformed energy spectrum of an arbitrary ion Fig. 8 we can for certain y_{He_4} and power spectral index γ , determine values of E_2 ,

On the basis of these calculations we can make the following conclusions:

of the traversed thickness of the solar atmosphere by these ions. At the same time deformed more than the energy spectra of 'He ions. the energy spectra of ³He ions are, in agreement with the experimental data, The deformation of initial energy spectra of ions decrease with the decrease

decrease of energy more than in the case of direct escape (v = 2). B. For the turbulence spectral index v < 2 the ³He/⁴He ratio decreases with the

the case of direct escape. For v > 2 the ³He/⁴He ratio decreases with the decrease of energy less than in

D. The critical thickness of ³He and ⁴He ions Y_{He3} and Y_{He4} increases with the

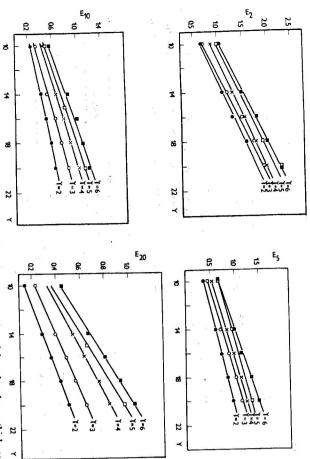


Fig. 8. The dependence of quantities E_{v_i} ($n_i = 2, 5, 10, 20$) as the function of the solar plasma thickness Y, traversed by 'He ions, for v = 2 and various values of γ . (Energies E_{v_i} are in units of E_i).

decrease of turbulence spectral index v, simultaneously for v < 3 there is $Y_{He_3}^{trit} \le$

IV. CONCLUSION

propagation of these ions with the experimental data [10], [11], [13] it follows that part of this solar energy particles spectra, registered at the time of ³He-rich solar traversed through the solar plasma, calculations for cases of direct and diffuse through arbitrary thickness of the solar plasma. determine the deformation of energy spectra for other ions, which traversed According to calculations of 'He ions spectra deformation we can very simply particle events, we can explain with the help of this deformation mechanism. According to the comparison of the deformation energy spectra of ions which

al. found that the time of particles injection to the interplanetary space is here correspond to their real values in the solar corona. In paper [10] Möbius et $\tau_{\nu} \leq 900 \text{ s.}$ In the case of coronal diffuse propagation we can express τ_{ν} by the Finally we can study the problem if the parameters of the solar plasma calculated

$$\sim L^2/4d$$
, (11)

where L is the characteristic dimension of solar flares.

consider the spectrum of certain ions, it is the power law and also the pertinent $n_e \sim 10^{15} \text{ m}^{-3}$. This corresponds to the real concentration of plasma of the corona. with the help of expressions (9) and (11) that the electron density in this region is temperature of this region T_e . According to values of these quantities we calculate minimal energy E_{min} at which we can, in the acceleration region on the Sun, Comparing the spectra calculated here with the experimental ones we obtain the

ions with the results of experimental measurements. In future it will be interesting to compare calculated energy spectra of heavier

REFERENCES

- [1] Slivka, M., Kocharov, L. G., Kocharov, G. E., Dvoryanchikov, Ya. V.: Preprint of A. F. Ioffe Physico-Technical Institute Leningrad (to be published).
- [2] Ibragimov, I. A., Kocharov, G. E.: Proc. 15th Internat. Cosmic Ray Conf., Plovdiv, 12
- Kocharov, L. G.: Izv. AN SSSR, ser. fiz. 44 (1980), 2480
- Kocharov, L. G., Slivka, M.: Izv. AN SSSR, ser. fiz. 44 (1980), 2489
- [3] Fisk, L. A.: Astrophys. J. 224 (1978), 1048.
 [4] Kocharov, L. G.: Izv. AN SSSR, ser. fiz. 44 (19)
 [5] Kocharov, L. G., Slivka, M.: Izv. AN SSSR, se
 [6] Kocharov, G. E., Kocharov, L. G., Charikov, J.
 [7] Kocharov, L. G.: Dissertation, Leningrad 1981. Kocharov, G. E., Kocharov, L. G., Charikov, Ju. E.: Izv. AN SSSR, ser. fiz. 45 (1981), 579.

- [8] Kocharov, L. G.: Proc. XI. Leningrad Seminar on Space Phys., Leningrad 1979.
 [9] Kurt, V. G., Logachev, Ju. I., Stolpovsky, V. G., Daibog, E. I.: Proc. 17th Internat. Cosmic Ray Conf., Paris, 3 (1981), 69.

- [10] Möbius, E., Hovestadt, D., Klecker, B., Gloeckler, G.: Astrophys. J. 238 (1980), 768.
 [11] Möbius, E., Hovestadt, D., Klecker, B., Scholer, M., Gloeckler, G.: Proc. 17th Internat. Cosmic Ray Conf., Paris, 3 (1981), 166.
 [12] Tsytovich, V. N.: Nelinejnyje efekty v plazme. Nauka, Moskva 1967.
 [13] Möbius, E., Scholer, M., Hovestadt, D., Klecker, B., Gloeckler, G.: Astrophys. J. 259 (1982), 397.

Received January 4th, 1983