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PROPAGATION OF THERMO-ELASTIC WAVES IN
A HALF-SPACE WwITH THERMAL RELAXATION®

S.G. MONDAL'), R. N.JANA?), Mahavidyalaya

The generalized dynamical theory of thermo-elasticity has been used to solve the
problem of axisymmetric deformation of a half-space under a point load of temperature,
step wise in time. The .displacement potentials have been introduced and the Lap-
lace-Hankel transform followed by the Cagniard-De Hoop technique has been made use
of. The expressions for temperature, dilatation and displacements are obtained in
integral forms. Wave geometry for temperature, dilatation and displacements in the
half-space have been shown. It is seen that temperature and dilatation consists of conical
and hemi-spherical wave-fronts and displacements are also of a similar type.

PACTIPOCTPAHEHHE TEPMOYIIPYTHX BOJH B EOEOQ:.EE&
C TEILIOBOU —-H?Nﬁ>—§ﬁ

B paGore s pemeHns npobneMbl OCECHMMETPHYHOTO nedopMHpOBAHNA HONYnpoc-
TpaHCTBa DTHOCHTENLHO To4ex TEPMOHArPy3kH HCHONB30BaHa 0600meHHAT OHHAMHIEC-
xas Teopus .ﬂnﬂZO%:ﬂ%ﬂOnﬁs. Bsenenbl noTeHUHaNbl cMelueHua HCNONb30BaHO :—unoan
pasoBaHHe Tlannaca-XaHKens € HOCNENYIONNM MPAMEHEHACM metona Kanbspa-Tie

" Xyna. B MHTETPANLHOM (hopme TIONYHEHBI BHLIPLKCHUS 1T TeMIepaTyphbl, PaCTKECHHUA
M CMEINEHHH. TIponeMOHCTPHPOBAH reoMeTpus BOJIH TeMmepaTyphl, PacTIDKCHHA
H cmemenuil B NONYIPOCTPAHCTBC. OG6HapyXeHo, TO TeMmepaTypa H PacTsKEHHE
COCTOMT B3 KOHWIECKHX H nonycdeprieckux BONHOBBIX (ppOHTOB H cMeleHns HMEIoT
TAKKE aHATIOTHUHBIA XapaKTep.

L INTRODUCTION

A. H. Nayfeh and S. Nemat-Nasser [1] studied the transient behaviour of
a thermo-elastic wave in a solid half-space on ‘the basis of the generalized
dynamical theory of thermo-elasticity proposed by Lord and Shulman [2]. They
used the Laplace—Fourier transform and the Cagniard-De Hoop technique to solve
the problem of a two-dimensional thermo-elastic disturbance in which an instan-
taneous heat source is applied. . .
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In the present work the problem of an axisymmetric thermo-elastic disturbance
in a solid half-space is considered by using the same theory. The stressfree
boundary surface of the half-space is subjected to a point load of temperature,
stepwise in time. The Laplace—Hankel transform followed by the Cagniard-De
Hoop technique are used assuming the same relation between integral transform
parameters as that of earlier workers [1].

The short time solutions are obtained in integral forms. Finally, wave geometry is
used to show that thermal , and dilatational waves consist of two types of
wave-fronts, conical and hemispherical. The displacement are also of the same

type.

’

. NOTATIONS USED

T, Tre» Too = SUIESS components, T = temperature, €, €n, €ee = strain
components, To = initial temperature, € = dilatation, ¢ = density, Vi=
32 19 @&
2 3,0, = 8 ecific heat and constant deformati = —
arr ror 3z’ P ation, f=a (34 —2u), &
= coefficient of linear expansion, A, p = Lame’s constant, To = thermal
relaxation, T = dimensionless thermal relaxation, ¢ = coupling parameter, k

= coefficient of thermal conductivity, <~.h> .ﬂmt
ponents.

, U, u, = displacement com-

IIL. STATEMENT OF THE PROBLEM AND BASIC
: EQUATIONS

We consider an axisymmetric thermo-elastic disturbance in a homogeneous,
isotropic thermo-elastic medium occupying a half-space z>0, the origin of the
z-axis being taken on the boundary of the half-space and the positive direction of
the z-axis into the medium. The motion is caused by a point load of ﬁavmnwano
applied at the origin. The thermo-elastic half-space is initially undisturbed and
stressfree.

The displacements, strains and stresses referred to the cylindrical coordinates
(r, ©, z) are

F"FA*. va EQHO. =~.“=AAﬂ. Nv

PRI S S
e mw.. 06 ﬂm 44 mN
L (2, )
?INAmN+wx
_Ou,  u O
mlw~+x+mm M
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1, =2pe., + Ae — Pt
1,, =2ue. +he— Pt
ﬂmmuwtm®m+>mlma

T, = pe, To=Te: =0 @

The equations of motion in the absence of body forces and the modified heat
conduction equation with thermal relaxation are

NIHV de_ o387, 3

w(P-B)urarwg=parel (32)
de ot

. %€ _ g —+gil 3b

:<S+;+5mN mm~+m=: (3b)

(oc.t+ Proé) Tot (oc.i + Broeé) = kV*t. 4)

To obtain dimensionless equations we use the notation

2 2
e*nmpa , &n>+mt. = ms =t
k e Y’ pec,
. 1 ¢ 006G 0C.C oCl . .
and introduce pry mw_m. Bu* , To B tand |wl as the units of time, length,
displacement, temperature, velocity and stress by Nayfeh and Nemat-Nasser
11

The dimensionless equatins from (2), (3) and (4) are

i+ri—Vt+eée+1€=0 )
du, AmF Fv
2 = 2 MR 2 __ YOr g ot Ve 2
Y’Ta=Y m~+@ DG, t7) T (62)
Y.=Y Wﬂ+ 2(y*-2) w| y'et (6b)
du, , Ju,
Y'1=3,  ar (6¢)
)
Voo = (¥ =2) a4 2(y = D) T Ve (69)
de 1 ot
20— (y2—1)=— 2 _ ale 2

v =(y Cm«+A< \v:. Yes, (7a)

de 9t

20— (v2—1) — . s
Y. =(y :mn+<ns Y'e 5, (7b)
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The boundary conditions for the problem are

7, =T =0 on z=0, r=0 (8a, 8b)
_nH®8() o
T= Do , t>0 on z=0 (8¢)
where T, = constant.

The initial conditions are
w=u=1t=0 2>0, r>0  when t=0. (8d)

The ususal regularity conditions on the displacements and temperature require that
u,, u;, T tend to zero as both r and z tend to infinity.

iv. U—mwr>nmvmmz.—, POTENTIALS AND THE LAPLACE-HANKEL
TRANSFORM ]

We introduce the displacement potentials

u, =3®/or—3W¥/oz (9a)
u, =0d/oz +(1/r)d/3r (r¥). (9b)
Substituting in (7a) and (7b) we get -
auwgﬂela_ (10a)
Aﬂlwv v- y¥=0. (10b)

From (9a) and GS, (10) and (5) we get a coupled differential equation
m?ﬂ&+<~&vuﬂela<~&|4~&+a&+ d-V:d)=0. (11)
From (9a), (9b) and (6) the stresses are

2 2
pempro-a[[E2r18) - (ZLAEve]] 20

ar* r or 9rdz r 9z
3*D - 1 3’y
2 — i ) ——
¥ flnll?mﬂ? L w-257. (12b)
The dilatation
T=d. (13)

As usual the Laplace—Hankel transform is used with the parameter p and &,
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respectively in equation (9a)—(13) subject to an initial condition (8d); we use

Jo(&r) and J.(&r) for &, 1., U, T and Y, 1., U, respectively.

P YO ).
i,=—50' 73,
_, 3P
=Nl|\|mu +E¥
=t H 2 AW Y 24 1
y=l(D*-5)8 - p*P]

¢=(D*-EH P’
Abnlvaﬂ\~|<~ﬁu~M\~"O
e(wp*+p) Gnumfw.u:bfmausfax
[(D*-E)-p1D’

R e D I
.= - |2 2", (p2+£ ¥ ].
: dz
The boundary conditions (82), (8b) and (8c) are transformed into
i,=T.= on z=0
= L3 on z=0
p
V.SOLUTIONS

We assume the solutions of (16a) and (16b) in the form
Yr=Aem

d'=A, e+ Ase ™

(14a)

(14b)

(15a)

(15b)
(16a)

(16b)

(17a)

(17b)

(18a)

(18b)

(19a)
(19b)

Since z—®, &', ¥’ are finite, where Ai, A, and As are independent of z but

may be functions of E and p.

sm“ mN+ .v\NﬁN

2_ 24 p2 - ENG.T.H@V
mi=E+ P =1 p -1 "
2__ g2 2 ﬁﬁ.*d@vu

mi=E*+1p +m+||\l|||_.+w?l5m.

(20a)

(20b)

(200)
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Using (19a), (19b) we get from (14a), (14b), (15a), (15b), A:.»v and (17b)

al=Aum; 6= E[A e+ Az e (21a)
G, =EA; e ™ —mA e msAs e ™ (21b)

1
= [(mi—E*—pT)A ™+ (mi-E*—p*)Ase ™) (22a)
g'=(mi—-ENAe ™+ (mi—EHAse™™ (22b)

Yi. = —2EmA T [y*(mi—ED)+2E A 7™+
FPP(mi—ED)+ 287 Ase™™ yei’ & (23a)
Pi.=—(mi+E) A e 2E[maA, e ™+ maAs €. (23b)

Using the boundary conditions (18a) and (18b) in equation (21)—(23), we
obtain A, A; and A; as

N 1 2.2 2 2.2
A= wmm [ms(y?p*+2E%) —m(Y'P +2E%)] (242)°
A,=5E @48 myms — (mi+ %) (28*+7°pY)] (24b)
A= lbsm [4E2mym, — (m?+E7) 287+ 7°P)] (240)

|Al=p(ms— m,) [(ms+ my2) (2% + v )Y - 4E2m,(mems + E2+p?)] (25)

(@, @i, &, 1= M_ [asx, Gzx» Goks @] € (26a, b, c, d)
an=2Em [(v'p* +287) (s =m0 (272)
=t + £ QB+ )~ 4B mim] 255 (27b)
o= (it B 8+ Yp?)— 48 mums] 557 @79)
= 2E7[(ms = ) QE V') (282)

g [+ E7) QB+ 7p?) — 4 mms] PHE (28b)
o = — (3 + £ Q>+ p") — 45 muma] "4 (280)
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s mp——— i S T T st

as =0 (29a)

o — (3= ) [+ B QE™+ y'p") — 48T B e
o= (= E) [(m3 + E7) @87+ 7p) — 4E7mum] . (299)
an=0 (30a)

e i+ E) QB 4 mml G GO
eorm (i E2— p?) [+ E) @&+ 7P~ 487l 2060

The stress components may also be found in a similar manner.

We shall now obtain the short time solution for the displacement, temperature,
etc., using the Cagniard-De Hoop technique ; for this we expand m;, 1z and ms.

Short time expansion To expand mi, M2 and m; for large values of p, we assume
a relation between the Hankel parameter £ and the Laplace parameter p and put
gE=pn as in [1]. From (20a), (20b) and (20c) we get

mi=p’st’ (31a)
2_ 2 %2 _ p’e % — 1 E
mi;=p’st —7 T T \\lv?f: (31b)
2 pZoa? p’e -2
mi=p>s} +v+~.|H a+h?|5 (31¢)
st=(n*—sk*)'"% k=1,2,3. =7 s;=1, s=1"
my=pst (32a)
e Pl 1\\~\_ .
m,=psi 2(t—1)s% T p(r—1) (320)
1 TED ﬁ -2 w
=psX+—+ """\ ox
ms; Eu+muw 7= D)5t a+u?‘lc. (32¢)

Equations (32) are same as equations (29) in Nemat-Nasser [1], using (31) and
(32) in (27)—(30) and then in (26) we get
y - - - - 2 >:n m:n >Nk mNa
w “w Mu -u d~ = ‘I‘+I‘|u|\l+\lu
[a:, a ] ."M- ﬁ P’ 0’ e p°

(33a,b, ¢, d)
Az B A m.xu_ e
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>:umsu§9\+§~v e B _stn(y*+27) T
D*(Gt+sH) ' (z—1)s3D*
e
As=T"Le, Bi=0
AT g, LD
A= e Bom DD
Qe uﬂalaw & mauwaﬂwﬁ ¢
Ayu=0, By=0
>sn:m~m*b. & maunu.ﬁn e
A= aanH £, Bn=1 m+«m..a||~L aaINH

Aa=0, Bu=0

__ntM* _ Nauuwn.. 1
Ae=Huiz-1) © msnruz. :T:Ta
>=H§E+1N=w:ulC+q.&U.._E

(z—17siD* .
B stgaialSum|mwb*?m?|mv|?|Cd
43 (zt—1)’stD*
) A =p'D*(s¥’—s%’)

. U*“ANSN.T *NVM‘A.Q—N“%&.M
M*=4n’stss— (v +2n°)"

We now make use of the result

5o(rE) =5

2x

G*nm sin x QX

£

(34a,b)

(34c,d)

(34e,f)

(35a, b)

(35¢, d)

(35e, f)
(36a, b)

(36¢, d)

(36e, f)

(37a,b)

(37¢c, d)

(37e)

(371)

(38)
(39a)
(39b)

(40a)

and then take

n= AQN + envzn A&OUV
sin x = | (40¢c)
AQN + eNv:N .

Taking the Hankel-Laplace inversion we get from (33a), (33b), (33¢), (33d)

B Y (O

As?:n +Wlamvw olians: dgq QEH_ ’ (41b)
4
o 4w 3
(w, u]=<" Tan:o _‘é _,MH ?>:+Mu_l_av. (422)
A.»: + m%i e Peei) dgq EL. (42b)

We assume T# 1, the integrands of (41a), (41b) and (42a) and (42b) have no
singularities except at the zeros of D*. We take £ =3. The singularities of the
integrands in (41) and (42) are the branch points in the g-plane at

@ = ti(0®*+ v (43a)
v = ti(0®+ 1) v (43b)
q;= ti(0’+ 7)"? (43¢)

and the simple poles at gz = *i (0*+ vR)'

The poles correspond to the zeros of the Rayleigh function D* where yr = €1/ Cr.
cx is the Rayleigh surface wave speed. The positive roots of these singularities lie in
the upper half of the q-plane.

The Cagniard-De Hoop technique:

The integrands of (41a), (41b) have branch points
@= +i(0?+s)"?, k=23

The necessary condition for the convergence of these integrals are that s¥%, k=2,3,
be single-valued functions with positive real parts on the path of integration. If we
introduce a branch cut along the imaginary g-axis from each branch point to
infinity, the condition on 5%, k=2,3 holds everywhere in this plane.

Again the integrands of (41a), (41b) have poles where D*=0, the contour
q = qi is found by solving

t=s¥z—iqr, k=2,3 ‘ (44)
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% o .nln|l 3 N :N el.usu .e
gc==* |7 (w*+sk)p cos _mmE (45)

k=2,3 /0> > (w* + 50

Each of the integrands (41a), (41b) tends to zero exponentially as q tends to
infinity. The contribution from the arc of gi at infinity vanishes. Moreover as ¢
varies from o(w>#sH” to infinity, qi traces a hyperbola with a vertex at
g =i(w?+s})"?sin . The integration contour has two possible configurations in
the g-plane depending on the values of @ and w.

bLu|

LADHONWVYE

Fig. 1.

Case I: when (@”+ 1) sin @< (0*+1)"?
P<P,, when 0<w<®

or &>®., when W< w<®

where
., 1
Do =sin"" i (46a)
.= (t sin® @ —1)"* sec . (46b)

The integration contour is &B!% given by g in Fig. 2a. In this case the <2.8x.mn
q3: does not lie on the branch cuts.

Case II: when (w*+ m)"*sin @> (0*+ 1)
Pd>&, when 0<0<0:

the vertex of g3 lies on the branch cut between the branch points at g, and Qs
Fig. 2b, and it is given by q3 for t/0 > (w*+53)"” plus

28
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Fig. 2a.

Fig. 2b.

Fig. 2c.

243172 n N
awHI;?eN+mwle.|~* 8wal+WMmEGHS‘

with ranges of ¢ given by vi—0
19 = o [(w*+ 1) sin & + (s3—s53)"? cos P1=
M~M©Ae~+uwv5n 13.
From (41a), (41b) we get
2 o B B
Hﬁg .ﬂ.—“w.&lﬂ ﬁM #h ‘ “ wﬂ ﬁ>ur+\ulk.¢ >&w+\>|m~x

&5 Vo Joax p 14

(472a)

(47b)

(48a)
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|EQan=h_ M.T:Aele v%&:&z@ Woﬁ» +Mlum
Xe dt w 1 : e 14 33 P s
>:+ma_ e 38 4t do +
4 dt
@er [ , Bss B.s
+H(P — Po) pRe|Ast llv , Ads +..lv| X (48b)
o P

_,dqs g
Pt
Xe a dtdo/|.

The first two terms in (48a), (48b) are the contribution from qi, k=2,3, when
the vertex of the hyperbola (45) lies below the branch point g». The last two terms
are the contribution from g3 when the vertex of (45) lies on the branch cut between
the branch points g and gs. Equations (48a), (48b) are valid only for 0= @ < n/2,
Fig. 1, which corresponds to the interior of the half-space.

Interchanging the order of integration and taking the Laplace inversion of (48a),
(48b) we get

3 2, 2,172 2
[e, T]1=2 > T~Q| osk) _J. ¥ Re T»US_, t, w) a\amm

k=2 o

(49a, b)

2 d
+ Baugi (t, ©) %. Augi (t, ©) mmlmx+ Bugx (t, ©) .mmL QS_ +

<

T, 2.+
+H., % Re Tuﬁ? eTmmT Byqs (t, ©)

Act

dgs
dt’

I Q +
At 0, 0) £ B3 (@) S| do)

where
mN 1/2
An= Amm - Hv
ta=p{sin®+(r— 1) cos @}
th=0(r—1)"?sec @
w 2 . 1/2
Ta= :Ml (r—1)"*cos ew cosec® P — L
:n_ = :Ae e ennv mﬁn = nnmv mﬁnmn = nv.
The first two terms in (49a), (49b) represent the dilatational and thermal wave

motion behind the hemi-spherical wave-front at t/s, and t/ss, Fig. 2c¢.
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The third terms in (49a), (49b) represent

the conical wavefront at t=£, for

& > @.,. This conical wave-front is the surface of a truncated cone given by t=1.

for @ > P... .

The third term in (49a), (49b) alone contributes in front of the surface £ = t., for
& > @., which is the equation of sphere t=tl, @> Pa.

VI. DISPLACEMENTS

To find out the displacements &, 4, We shall invert (42a), (42b) as in the case of e
and t. The inversion is very difficult due to the nonvanishing term containing s¥ in
the exponential which introduces an extra branch point i(w*+ y*)"* in the g-plane.

The relative position of i(w”+ Y2 wrt. i(w

24+1)"2 and i(w*+ 7)"”* depends on

the values of T and y>. As we have assumed =3 we take y*>=4 for the distinct
positions of i(®”+ v»)"? and i(w” + )" For k=1, 2, 3, the integration path of g

has the following possibilities in the g-plane
Case I
when (a) (w?+1)"?sin @ <(w*+1)*

depending on & and .

je. <P, when 0<o<®
or >®.,, when w,<w<®
and (b) (@>+7y?)"sin & <(w'+1)"7
,GNASGN when O0<w<®
or &> P, when Wa2<0<®
&, =sin"’ L (50a)
.v\.
w2 =(y* sin® @ —1)'” sec D. (50b)

The integration contour is simply given by gi in Fig. 3a. In this case the vertex

of g does not lie on the branch cuts.
Case I
when (a) (0*+v?)'?sin @ >(w*+ 1)

&>P, when 0<w <D
and (b) (@*+7)" sin d<(0*+1)"*
. . d<®P., when 0<w<®
* or ®>®P.; when W:3<O<®
.ﬂ—\N
Dy =sin"' — (51a)
Y
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0., =(y* sin® & — 7)'? sec P. (51b)

The vertex of g1 and g7+ lies on the branch cut between the branch points g and
g, Fig. 3b.
HN
QMH;WmE %l?&~+mwvlmmw cos A&Hﬁ.: (52)
Case 111
when (a) (0’+ 7)"?sin ¢ > (o' + 1)

d>P,, when 0<0<Oc

and (b) (0’ y*)"?sin @ > (w?+71)"”
. d>d., when 0<w <.

The vertex of g3 lies on the branch cut between the branch points ¢s and g1,
Fig. 3c.

2\)1/2
qi =i m sin GITSNJUL‘M& cos iw,\uwj\“ (53)
v.—0, vs—0
£ =o[gs sin @ +(si— s2)'? cos P1<t<0q:= @

¢® = o[q. sin @ +(si= s3)"2 cos P <t<oq= 2

L3 (a Bu aBulx
HSJELIP‘MN _.Mn“- o Jea Re 1k v. 2k P
2 w_u

x@-smm_ﬂw.& %L+EAO|GL h _. :wn “>:+.m.
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Bx) . dgi ‘_:. %u . A B;
— t = + b—- P, RelAi+—,
Axn+ » wn ar dt do + H( ) y ) . 5

>a+wmw aé.@h dt do+ , T:e |ean
/] dt k=23

s, m m-.a
Xhﬂ_ Re “>:+|\Nwl_|u >N~+|wv OB ‘%ﬂ—.ﬁﬁ QS#-T

e ,

= (- B B
+ M ﬁmﬁe - enwv ~— 4— Re *>: +|M~|n >N—+|va X
o N

k=2,3 P
Wk

xe ? da: dt &L .

at (54a), (54b) .

The first three terms in (54a), (54b) are the contributions from qi, k= 1,2,3
when the vertex of the hyperbola lies below the branch point g.. The fourth and
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v.b m W
2 Rl & r 4
o m \/O b ]
> Q (o]
N c
%) =
&
o]
i Req
Fig. 3a. Req

LADHONYYE
1LNDHONVYE

Req Req

fifth terms in (54a), (54b) are the contribution from g3 when the vertex of (45) lies
on the branch cut between the branch points g and gs. The last four terms in (54a),
(54b) are the contributions from gi when the vertex lies on the branch cut between
the branch points g1, 45 Equations (54a), (54b) are valid for 0< & <x/2, which
corresponds to the interior of the half-space. As @ — 7/2 the contour collapses on
the imaginary g-axis, Fig. 1.

3 :ug..Nv,m.:u Qﬂr
_‘.E‘J -&L "N M ﬁ«—' —HMNO A>;Qw Qu svg >~x&w An, evv lm.~|

k=1 ]
X mﬁn - @hkvv dt +\% Re ﬁmnwﬁr AM‘ EV. mnwﬁw AM. evv X
(]

1

wx 39% 1 (7 - 05:) ﬁ aeT—ﬂ

Lk ﬁmﬂm A.}E&NA? ev.
dt Act
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Q X 1 % -
}UQNA? EVV lmmul mn_ dt + hve Re Am_uﬁu Aso ey

. Baqs (1, e:a\ﬁ H., ﬁi do+ “ Re {Augi (1, ®),
dit 23 Jaa
. dq? ¢ s
Anyt (t, )} 37 He dt+ | Re {Bugi(t, @),
0
+ (G, oy AL 7 55a, 55b
B..qi (1, )} Tl H. dt{dw... (55a, 55b)

nn 12
pa= (1)

t,=pl[sin @+ (v*— 1) cos @}
t.=0(y’— 1)"* sec @

H 2 1/2 & 2 vz
T2 = :|IA< —1)"? cos @ cosec d-1

o
nN 12
?m@ﬂv

ta=p{t"?sin @+ (y*—1)"*cos P ¥

=0 {(y'— 1) sec P}

. “ N —\N N N —\N
T3 = MIS\IS nomegwooela.

H,=H(®-®.) H(t- t)YH(@L—1)
H.,=H(® - @) H(f—ta) H{ta = f)
H,=H(®—P) H(t- tu) H(th— 1)

. = H(® - @) H(i—ta) Hti— 1), k=2,3.

The first three terms in mn:mm.os (55a), (55b) represent the equivoluminal
motion behind the hemi-spherical wave-fronts at t, t/T'?, t/y, Fig. 3d. The fourth
and fifth terms in (55a), (55b) represent the equivoluminal motion behind the
conical wave-front at £ =L, for @ > P... This conical wave-front is the surface of
a truncated cone given by t=t. for @ > P.,. These terms also contribute to the
head of the surfaces {= ¢!, ®@>®., which is the equation of a sphere.

Lastly, the remaining terms in (55a), (55b) represent the equivoluminal motion
behind the conical wave-fronts at = t., for > P2 and t =t.; for > Des. These
terms also contribute to the surface at ¢ =t for &> D, and t=ti for P> L/ 2
which represent the spherical surfaces.
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VIL DISCUSSION

The analysis presented in the paper is applicable to materials conducting heat in
which the classical theory of heat conduction represented by the parabolic type
equation is replaced by a generalized law of heat conduction of the hyperbolic type.
The observation of the second sound (thermal wave) in solid helium and sodium
fluoride has led to the prediction of the second sound almost in all solids [1}.

The plane-strain problem for the half-space was worked out by Nemat—Nasser
who also carried out the numerical calculation of the problem. The corresponding
axisymmetric half-space problem has been solved in the present work. The
solutions for temperature, dilatation and displacements valid for short time have
been obtained in integral forms and these can be calculated pumerically for
different values of @ and taking the material parameters such as € =0.05, t=3,

2 —

y*=4... as in [1].

1. .—.oE—.«»»Eno and dilatation

The first of two terms in (49) represent the dilatational motion behind the
longitudinal wave-front for k =2 and the temperature motion behind the thermal
wave-front for k =3. For a fixed value of 0, t =520 and t = s;p indicate the time of
arrival of the longitudinal and the thermal wave-fronts, respectively.

The last term in each of the expressions for the dilatation and temperature in
(49) are the contributions of the conical wave-front (head wave-front). This is
represented in the rz-plane, Fig. 2c, by 2 straight line. When ¢ is constant,
¢=g[sin ® +2'* cos @] indicates the time of arrival of the conical wave-front.

In particular, when 7= 0, £ =0 the dilatation motion ceases and the temperature
reduces to

ﬂn

- ! qi(t, w)d’qs | mhm._
t=1.Ha N Woﬁ Dest df +?Q.8M T do.

2. Displacements

The first three terms in (55) represent the shear motion for k=1, dilatational
motion for k =2 and temperature motion for k = 3. For a fixed value of @, t =510,
t=s,0, t=5:0 indicate the time of arrival of shear, longitudinal and thermal
wave-fronts, respectively and o[sin @+ 2112 cos @], o[sin P + 3" cos @] and
o[3V*sin @ +cos P}, represent the times of arrival of different conical
wave-fronts. These conical wave-fronts are represented by straight lines in Fig. 3d.
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