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This paper considers a Hamiltonian of crystal fluctuations as a %E_omo:w_ of three
Kinds of fields, i.e. ordering field, field corresponding to the distribution of solitons and
a field connected with the distribution of coupled electron-fluctuon systems. A ther-
modynamic potential of soliton-fluctuon system was analysed and the fluctuation theory
of this system was developed elsewhere. The present paper analyses basic kinetic
equations describing the process of domain wall motion within the framework of the
given model.
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Toro, B paMKax nanHO# Monenn n3ydaroTcs OCHOBHbBIE KHHETHIECKHE ypaBHEH#S,
v OnUCHIBAIOIIME JABIDKEHME TPaHHIB! HOMEHA.

L INTRODUCTION

Soliton and fluctuation formations in ordered systems have recently become and
object of thorough investigations. The behaviour of solitons in ferromagnetics was
analysed in [1—3]) and that of fluctuons and phasons in ferromagnetics and
ferroelectrics was considered in [4—6].

It is known [7] that for any real ferroelectric the polar state is changed for
a nonpolar one near the phases transition point T by means of the formation of new
phase germs, but not within the whole volume simultaneously. New phase regions
appear stochastically. This appearance of an energetically wnnmonmc—n phase does

notlead to 2 complete phaseé change (temperature hysteresis i AT ~1+2K). The

e

'} Dept. of Theoretical Physics, Latvian wzzm University, 226098 RIGA, Latvian SSR, USSR.

245



heterogeneous structure of ferroelectric oJ.mS_w is stable in the hysteresis region
this assumption being used, e.g., in the diffuse phase transition theory E_.
According to the thermodynamic theory of germ formation at a phase :mumaom
their increase is possible only when a certain critical size is exceeded [9]. It is also
known that the dependence of the domain wall motion rate on the external field
coincides with the dependence of the thermal wall motion on |T — To| [10].

We consider the change of structure from a less preferable to a more preferable
one as a kinetic phase transition, since its major properties are connected with the
dependence on the time structure rearrangement process [11]. A phase transition is
connected with strongly diffused fluctuations of the form and position of
a boundary between two structures, causing wall motion. The fluctuation theory of
phase transitions [12] allows to describe a system having a phase transition by
means of the multi-component ordering field @ ().

Its expansion in the Fourier series

P(M=2 " (1)

does not include short-wave harmonics g = |q| <4go. This paper analyses, along
with the ordering field @ (r), the field ¢° (r), which corresponds to a definite
distribution of stationary (not moving) solitons in a an,Sr and the field ¢°(r)
corresponding to the definite distribution of electrons which form coupled states,’
i.e. fluctuons. We consider the crystal to be broken into a number of small nammonmm
In the case of a given region we have ¢ (r)=1, otherwise we have e,n (r)=0.
Summing up fields @(r), @' (r) and @° (r) in a statistical sum with respect to all
degrees of freedom we may determine the thermodynamic potential of a system

i.e. the “fluctuation Hamiltonian”, which is the functional H (@, ¢°, @°)- In case om
zero fields @° and @° we can €Xpress H(gp) as [9]:

i=[ [} t@or+o@]ar, ®

where @ (@) is the nonlinear functional of _ ,
&an wiite of @. In the case of H=H (@, ¢°, @°), we

1 1

m — Kl [AY 2N Wpuil H

% T &(Vo') +N &V |’n. +M :Won. + GAG,L dr, 3)
irm.:.u @.t =@+ e.,_ V¥ is a wave function of electrons, n. is electron density. The
equilibrium meaning @' and ¥ can be found by linearization of the functional [6]

H=H(, ¢, ¢)=H(o, ¢, ¥). 4
According to [13] the rate of change is proportional to the conjugated ther-
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modynamic strength ata small deviation from equilibrium. Assuming the deviation
of @ to be small, equation [12] can be written

6H
hen i O 5
1/ 59 4)

where A isa kinetic coefficient. It should be stressed that of the three components
of the pseudospin 0 = (0%, 07, o*) only 0° characterizing polarization (in our model
it describes an ordering field), @ is different from zero. Thus the Landau-Lifshits
equation is reduced to equation (5). The components of the pseudospin, following
[14] can be presented as
oi=(atai—abal, or=ilaiai-aial oi=[arat+afall

where at. s al ,are Fermi or Bose operators of the formation and annihilation for
protons and neutrons (i-position, quantum state S or a).

1. FLUCTUATION THEORY OF A SYSTEM
WITH mOF—HQZ-MFCQHCOZm

In the present paper we are not going to consider a domain wall as a continuous
medium and investigate thoroughly its structure. Instead we shall analyse the
switch-in function @ 3] determined on scales R > h which equals unity, provided
the r point gets into the volume of an energetically more preferable structure, and
equals zero oﬁrani._ma..>=m_omo=m€ we determine the switch-in functions @ (r)
and ¢° (r) equal to unity if an electron and soliton, respectively, are present in the
elementary cell (the Kiinzig region) [7] and equal to zero if these are not present
there. , —

A microscopically well-founded assumption could be made that the depolariza-
tion of an elementary region leads to the disappearance of a soliton there with
a corresponding release of its energy into a system. Now in the limits of the
proposed model we are going to describe the interaction between elementary
regions. The total number of regions is assumed to be N, n of them being in an
energetically more preferable phase. Evidently both the state of a system and the
kinetics of a phase transition are characterized completely by the function

x= %w (T). The expression for the full number of ways of distributions of regions

with the total number N, taking into account that there are n® solitons and n°
electrons in the system can be written as

N! dx\"
Nt (N
3 i:,:zlzéiﬁz%v : ©
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Expression (6) assumes the number of coupled states (fluctuons) and, respectively
places for the distribution of electrons to be directly proportional to the n_n_.?»ﬁ?m
dx/dT, which characterizes the number of order inhomogeneities in a system [15].
We designate x* =n*/N*, x*=n%, where N* is the initial number of solitons in
a system. Expression (6) allows to obtain system entropy by means of the
Boltzmann formula:

S(x, x*, x*)=—kN _Mk mx+xhx+(1-x—x)mn(1-x—x)-
)]

dx
—x*InN-—x°1 Anlv_
xm\ar/ )’
where k is the Boltzmann constant.

The internal energy of the system under consideration equals

U=NAux + NApw’x* + NAp=x°x°x + NAp“x°x + NAp“x* (8)
and the free energy for one region is
F= ml mu Apx + Apx® + ApSx‘x + Ap’x’x +
+ Au=x*x'x + kT T Inx+x*Inx'+ )

+(1-x—x)Im(Q-x—x)—x° Amm.vln
) A,x x*) x_nm.ﬁ x‘In N|.

In expressions (8)—(9):

2
Au=—2P.E+O(E?), E_nu.wm.— [V (r)|* dr,

Aut'=2g ‘ PW¥(r)dr, AW A8 th A.Fv kA 10)

..ﬂ..ul No
Ap=2g M P,(f(r)- 1) ¥ (r) dr,

where P, is the polarization, E is the external field, y is the electron effective mass,
g is the coupling constant, roHA/\Mmm and & are constants of the microscopic
Hamiltonian [3], f(r) is the soliton distribution function. It should be noted that
our model neglects the possibility of the appearance of two electrons or two
solitons in one Kiinzig region; this assumption is quite justified as their concentra-
tion is small. The attempt to take into account the interaction of elementary regions

leads to the internal energy of the system being a concentration function of x. We
expand this function in the series

U=N ﬁbtx +Apx+ Apsxx + Ap'x'x +
1

i 1 1
+ Au kxklm9k~+wuxulm§;,

1n
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where a>B>y>0 are corresponding coefficients of expansion. The number of
electrons according to the assumption is constant, n° = const. and hence x° = const.
According to the regions model ﬁﬁﬁngv for diffuse phase transitions the phase
transition point is determined by the condition x = 1/2. Since we assume that
depolarization of an elementary region causes the disappearance of a soliton, it is g

reasonable to draw 2 conclusion that the phase transition point corresponds to

ne=N°<2, x° uw N°¢/N.

Using (11) we may obtain for the free energy
F(x, x*, x°)= Apx®+[Ap+ Aps'xt+Ap'x’ +

+ Ap=xx’]x |W Qx~+.w. ?%!W. x4+
12)
+ kT T Inx+x° mx+(1—x—x)In (1—-x—x%)

n MHM |ln
=% _aAaL * Ez_.

In the case of the first order phase transition two values of x, and x, should exist for
which the free energy satisfies the conditions [16]:

“Ak_v“m&kuv. W.Ak_v“‘mﬂ-ﬁkuvuc.

(13)
F"(x)>0, F"(x2)>0.
Therefore we get for the phase transition point To
_ 1 . vnpe L AN’
.ﬁclw_nAZIZJﬁbt+>= N +— + "
LARNNT_a mlﬁ
2 2 4 81

Now let us consider the second order phase transition at the phase transition point
where should exist xo for which there holds

P =0, F'0m=0, F" (=0, F*x)>0,

(15)
F” @u —a+p-3 <+Mmuo, F @umuliup
m.xvnmmmwosm (15) determine the connection between the constants:
§=2(a—4KTo), <um€|§§uwu. (16)
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mwmo:oim from (16) that the internal energy expansion may be expressed by means
of only

U=N ﬁbtx + Ap Xt + Auxx + Apx’x + ApSxx'x —

1

a7
_L §~+W (o +4kT0) @mii. v

2

From F" AWJ > () we obtain %Vm.

Now we analyse the system divided by a domain wall into two connected
:oiomo.sno:m regions with the thermodynamic potential density po and
respectively. Then, the relation Ap =, — Ho holds. This structure corresponds :w

@.m system with two thermodynamic potentials taking into account the ordering
fields @ (r), @°(r), o (r):

H= [ Lo+ Ao () + A'g” O+ 07 (D@ () *
+ A’ (r) @(r) +Au”e” (Mg (N (r)] dr+oS(@, ¢, ehmmv

where
2
Ap=—2P.E, Ax o™ vy (n)%, Apc =2gP.¥(r),

Ay 108 g, Auzlv i

no

Ap*=2gP.(f(r)— 1) ¥ (),

and S (@, @°, ¢*) is the surface area of phase division, o is the surface ener|
density. ®
We need to formulate more precisely the lattice approach to the considered
problem. We assume that the system volume is split into cubic cells with linear size
Zn.en nt/1). Thus the complicated coordinates j=(x,y, z) of the cell centres form
a simple cubic cell. We regard the z-axis to be the direction of a wall motion and
exclude the configuration in which this axis crosses the wall surface more than once
(overhanging condition). This leads to the exclusion of the following configuration-

s: @r=@r=0, ¢r= 1and ¢=@-=1, ¢-=0, where the x and y coordinates are
constant, and we can present the expression for energy as

BH(p, 9" ¢)=a 2 @i+ o’ Sgita S eiwtal X oot
i i i

) es € L] x
+a D, Piviw *t3 M a0 (@i, ¢+

- - Ccv
xﬁ
+M. M:u a; (@, @) 9i + Q(e, 95, @),
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Where B =1/KkT, a=Au’b o= AplB, a B, w=ApPp, ot =
Ap=l’p, x= Bol?, #* = xAp®’, and Q (g, ¢, @) tums into infinity for forbidden

configurations, the values a; are equdl to unity for the nearest neighbours and

equal to zero for other cases
0, =) = Bol®, = HAPS, 0= Aul*B,
o (¢ 9= (20)
1, p#@,a= Aul’B, o’ = Aul®B.

The existence Of Q in (19) leads to the realization of only those system
configurations where for any X and y in the z-axis direction the parametres @
equal unity for crossing the domain wall surface and zero after its crossing. This in
its turn leads to o =0, since fluctuation states arc possible only when there are
inhomogeneities in a system. The local position of the domain wall may be

therefore described by

L.,= We oy Vey™ M Pi» ANMV

where V., ,adopts whole values. To calculate the kinetics of the process we have to
analyse the distribution function @ (@, t)- The medium position of the domain wall
equals in this case

H\"AH\F«V..HN M @AG, ) Ve y ANNV
P
We assign Eo.iw: thickness and the wall motion rate as follows
dL
y=SL, h=2((Lhy) ~ (Le) T (23)

111 KINETIC EQUATION

We describe the wall motion as a random sequence of @;; @} U5 nrwlmom. The
distribution furiction @ (@, t) giving the probability to reveal the assigned config-
uration at time f is described by equation [171:

c 9 mw, .3 ﬁM f(a @ @D e (@ - ele L. (24
where
%AS? Qw. emv“ONﬁ Allmmﬁﬁ. en. anv ﬁM €xp A\Emﬁet ew- eﬂvvgl—.
(25)
0@ (@) =Cx (@) (26)
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and @ = @;. It follows from the normalization conditions that C,(0)=1- C.(1).
A two-particle distribution function in the plane (x, y) reads

0® (@, )=B. (9, 9 27
whence we obtain
B.(1,0)=B.(0, 1)=C.(1)-B.(1,0),
B.(0,0)=1+B.(1, 1)~ 2C. (1)
A set of equations for C.(1) and B. (1, 1) has the form

4G _ (¢, (1) Cons () (G =D+ (Corn D= CEIEE

(28)

T

(8B0 D)5 (€. (1) = CarslD) Fm-2l)s (29)

:oi:TpEEi,

where

cw=35 () (BT Bt]
, 1

_3 (3 B.(0, D] [Bel@. O]
F(@)= 2, (w) feo P () ] ko) ]
fo=lexp (— (a+a’ns+ a“nend)—2(x+ (N=n®)) (m —-2n+117,
S (1-Ca(1) S a-C.(1)
=u“2u n =n“2n n
0 % ) 0 ./u\\Zn -

The wall-motion rate and its thickness are readily expressed via

(30)

3 IedG@) L
.LFaTaM ot ' =tlT,

B =412 QM C.()(a-G+2 T A-GO) 3 G :L. (1)

n>n'

The dimensionless rate ¥ = w/l=U(a, o', a%, %, x%°) and thickness h oscillate
with the period [, which reveals the appearance and increase of prominences from
the wall in a planc. Thus the physical sense of the obtained results is presented in
the fact that the present formalism describes the influence of the distribution of free
electron and self-localized states of the ordering factor on the kinetics of the
depolarization process. The soliton and fluctuon fields, as it is seen, effect both the
speed and thickness of the domain wall.
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IV. CONCLUSIONS

1. The process of depolarization of a ferroelectric with ferrofluctuons " in
a system as a kinetic phase transition has been analysed in the paper presented.
This process is considered to be a Kinetic phase transition.

9. The ordering fields of a system have been .determined, as well as the
fluctuation Hamiltonian. The problem is reduced to the investigation of lattice
model kinetics.

3. The main kinetic equation has been formulated and solved. It is shown that

taking into account solitons-fluctuons in a system Jeads to the renormalization of
the interaction constants.
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