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ON THE PROPAGATION OF A THERMO-ELASTIC PLANE
WAVE IN A THIN INFINITE PLATE WITH THERMAL
RELAXATION

S.G.MONDAL"), R. N. JANA?®), Bengai

The period equation corresponding to a thermo-elastic plane wave in an infinite

* thermo-elastic plate with thermal relaxation has been obtained when the stressfree plane

faces of the plate have been thermally insulated. This equation can be split up into

symmetrical parts which in their turn can be expanded when the plate is very thin. In

particular, the phase velocity-dispersion relation is obtained for such a plate in the case of

a symmetrical vibration. Moreover, the phase velocity has been shown graphically
and also the group velocity has been obtained in a tabular form.

) 0 PACIIPOCTPAHEHMH TEPMOYIIPYTO¥ ILIOCKOM BOJHSBI B TOHKOMN
. EECKOHEYHOM IUTACTUHKE C TEILIOBOM PETAKCALIMEA

B pa6ore nOAyYEHO NEPHONMICCKOC ypaBHEHHE, COOTBETCTBYIOMEE TemnepaTypHo#
ITOCKO# BONHE B GECKOHETHOH TepMOyNpYro# NIaCTHHKE € TepMU4ECKOil penaxcaime
U1K cydast, KOTfia IUTOCKHE rpaHy ILia , CBOGORHEIE OT HanpsOKEHNHA, TEPMHIECKH
H30TAPOBaHbL. ITO YPABHCHHE MOXET 6bITh PaVIONKEHO HA CUMMETPHUECKYIO H an-
THCHMMETDPHUECKYIO YaCTH, KOTOPBIC B MX IKCTPEMANBHBIX TOYKAX MOTYT GLITh pa3-
JIOXeHbI [IPH YCIOBHH, YTO LIACTHHKA O4EHL TOHKAd. B 4acTHOCTH, MONY4€EHO AuCHeEp-
CHOHHOE COOTHOMEH e s (ha30BO# CKOPOCTH A1 IIACTHHKY, MOJBEpralomieHcs CHM-
METpHYECKHM BHOpaLHAM. Kpome TOro, IpUBONMTCA rpaduk ¢a3oBoll CKOpOCTH,
a B ¢opMe TaGIHIBI TaxKe MpeHCTaRIeHa IPYNNOBas CKOPOCTh.

1. INTRODUCTION

The propagation of body and surface waves in the elastic medium was extensive-
ly studied by Rayleigh, Lamb, Love and others on the basis of the classical
theory of elasticity. By using the same theory S toneley [1] predicted the existence
of a wave which can propagate along the interface of two dissimilar elastic media in
welded contact, which is known as the Stoneley wave. In [1] the propagation of
waves in the infinite plate of a finite thickness in vacuum was studied from the
standpoint of the classical theory of elasticity.
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In this work we wish to investigate the propagation of a thermo-elastic wave in
an infinite plate in vacuum on the basis of the generalized dynamical theory of
thermo-elasticity proposed by Lord and Shulman [2].

The period equation corresponding to the elastic plane wave in an infinite
thermo-elastic plate with stressfree plane faces which are thermally insulated has
been derived and separated in symmetric and antisymmetric parts. In particular,
when the plate is very thin the phase velocity-dispersion relation is obtained for
symmetric vibration and is shown graphically. The group velocities are also found
out for some special values of the wave number and are shown in a tabular form.

1. NOTATIONS USED

r; = stress components in Cartesian form; ¢ = constant mass density; w
= displacement components; h, = components of heat flux: ¢, = specific heat at
constant deformation; To = initial temperature of the solid at which itis stressfree ;
T = temperature; T: = temperature-gradient; & = coefficient of linear
A+2u

u
e, = dilatation-gradient; V2 =03%/az% + 82/y*+93*/87°; To = thermal relaxation in
time; T = dimensionless thermal relaxation; K = coefficient of thermal conduc-
tivity; Oy = Kronecker delta; ¢ = dimensionless apparent phase velocity on the
surface; € = coupling parameter; k = wave number.

expansion; A, ft = Lame’s constant; y = o (34 + 2u); B2 = ;e = dilatation;

I11. BASIC EQUATIONS AND FORMULATION OF THE PROBLEM

We consider a plane thermo-elastic wave motion in a homogeneous, isotropic
thermo-elastic infinite plate of thickness 2H. The faces of the plate are bounded by
planes the x;= + H, which are stressfree and thermally insulated.

We introduce the orthogonal Cartesian frame of reference 0xix2Xs and take the
origin in the middle plane of the infinite plate which coincides with the plane 0xx,.

The basic equations of thermo-elasticity are

Ty.= Qi (1)

— hii=0c. T+ yToé (2

1, =Aedy+ p (Wit Ui~ yTo; 3

toh + hi=— KT )
i,j=1,2,3.

To obtain the dimensionless equations we use the notations w*=pc.ci/K,
ci=A+2u/0, £ = y*To/ B noc., 1= to,0* and introduce 1/w*, c/w*, pc.ci/ Yo,
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To, 0c.C1/Y, oc,tly as the unit of time, len i .
s OC s OCy , length, displacement, temperature, veloci
and stress by Nayfeh and Nemat-Nasser [3]. P ey

Eliminating 7; from (1) and (3) and h; from (2) and (4) we get
B, =(f*—1) e+ Vi, — BT (5)
T+l —-VT+é+1é=0. 6)

We consider :..o xz plane as the plane of motion of the thermo-elastic wave in
the thermo-elastic continuum and take

xi=x, x=0,x3=2,
u=u(x,z,t), :NH:HP us=wi(x, z, t).
The dimensionless components in the x z coordinate are
T,.. =0u/dz+3w/dx (7a)
T..=(B*—2)3u/dz + B*Ow/dz — p’cT. (7b)
The plane boundary faces z = + H are stressfree and thermally insulated.

T.=T.=08T/3z2=0. . ®

1IV. DISPLACEMENT POTENTIALS, PERIOD EQUATIONS
OF SYMMETRICAL AND ANTISYMMETRICAL VIBRATIONS

We introduce the displacement potentials @ (x, z, t) and ¥ (x, z, t) defined by

u=0d/3x -3¥/9z (9a)
w=0@/3z+3W¥/3x (9b)

and substituting into (5) we get
T=1[V’® - D] (10a)
2V —=0, (10b)

atin, H HHQE OD—.—N.H—,OE @ N:Q Hom a mQEnmﬂ O—Q0~ QMM&OmﬂEQN— ﬂﬂgQOMH

<‘e|?+ m.v 1+ ﬂw 2 chYn
2 a+e)+y| S Vet Tl.%v 2=0. @

We seek the solutions for @ and W in the form
®=f(z) exp i k(ct—x) (12a)
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Yy=g(z)exp ik(ct— x) (12b)

i=(- 1"
Using equations (12a) in (11) we obtain
D1 A Q) gy =o0. (13)
.ivono .
A =k*(c?—2)—(i—wck) (1 +¢&)ck (14a)
B=k*(1—c)+ck’(i- wck) (1+€—c?). (14b)

We choose the solution for & and ¥ by (13) and (10b) respectively in the form

& =[A, cosh m.z+ A2 sinh mz + As cosh m.z +

(15a)
A. sinh mpz] exp ik (ct— x)
W =[A; cosh msz + As sinh msz] exp ik (ct — x) (15b)
where A, Az, As, A4, As, Ag are arbitrary constants. .
., m = (A7 - 4B)"~ A} (162)
my=[~} {(A?—4B)"* + A}]'" (16b)
ms=ikb, b=(c*f*—1)"". (16¢)

Using (15), (9) and the boundary conditions (8) in (7) and (10) we obtain
(2-c*f?) {Aicosh m,H + A, sinh mH + As cosh m,H + (172)
+ A, sinh m;H} +2b{As sinh m;H + A¢ cosh msH } =0
2- nn.muv {A, cosh mH - A, sinh m;H + A; cosh mH - (17b)
— A,sinh mH}+2b{—As sinh m>H + A cosh msH} =0
(—2imy) Ay sinh m H + (—2imi) Az cosh m,H + (— 2imy) A sinh Enm._mmm&
+(—2im;) A4 cosh m,H—k(2— c2p?) {As cosh m;H + A, sinh m;H} =
. (2imy) A, sinh mH + (—2im) A; cosh mH + (2im:) As sinh m,H + (18b)
+(—2im;) A4 cosh m,H — K(2—c*p%) {As cosh msH — A sinh msH} =0 .-

bym.{A, sinh mH + Az cosh m;H } + bamz {A; sinh m,H + A, cosh m.H M..uu% v
, a

bym{—A,sinhm H+A: cosh m,H} +bamz{—As sinh n,H+ A4 cosh m:H} HAQGS
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where
b= —-k*+mi+ck? ; (20a)
b,= — k*+ mi+ c*k>. (20b)
Eliminating A,, Az, As, A, As, A, from (17)—(19) we get
[k(2 — ¢*B?)* sinh m*H (m:b- cosh m, sinh m-H —
— m;b, sinh m,H cosh myH )+ 2b cosh m;H {(— 2im, ) myb, +
+ (2imz) m,b,} sinh m,H sinh m,H] % [k(2— c*B?)*(m:b. sinh mH X
(21)
x cosh miyH — myby cosh mH sinh m.H ) cosh m;H +
+2b sinh msH {(— 2im;) myby + (2im,) m;b,} cosh mH cosh m,H]=0.
Now splitting up equation (21) into two separate systems we may write: Either
k (2 — c*B?)* sinh m;H (m:b, cosh mH sinh mH —
— m,b, sinh m,H cosh m,H )+ 2b cosh msH {(—2im) mzb: + (22a)

+ (2im,) mub,} sinh mH sinh m,H =0
or
k(2 — ¢*B2)? cosh m3H (m:b; sinh m,H cosh m:H —

_ m.b, cosh myH sinh myH )+ 2b sinh maH {(—2im:) mzb. + (22b)
+ (2imy) myb:} cosh mH cosh m:H=0..

It can easily be verified that the coefficients of A,, As, As and A,, A, As are
represented by equations (22a) and (22b), respectively.

Thus we consider the motion symmetrical about the z axis, assuming the solution
in the form

@, =[A, cosh miz + A; cosh m:z] exp ik(ct—x) (23a)
W, =[A, sinh msz] exp ik (ct—x) (23b)
and the antisymmetrical motion about the same axis, choosing the solution as
&, =[A, sinh m,z + A, sinh m.z] exp ik (ct — x) (24a)
W, =[As cosh mz] exp ik (ct—x), (24b)

we arrive at equations (22a) and (22b) for the symmetrical and the antisymmetrical
nw-.,a, respectively.

Equation (21) is the period equation of the thermoelastic plane wave in an
infinite thermo-elastic plate of thickness 2H. Equations (22a) and (22b) are its
period equations for symmetrical and antisymmetrical vibrations about the z axis.
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V. EXPANSION FOR THE CASE OF A VERY THIN PLATE:
SYMMETRICAL VIBRATION

Expanding the hyperbolic functions of sine and cosine for small values of H and
retaining terms up to second order we get from equation (22a)

6[k*(2—c*B?) {K*+ (i—ck) (1 +€)ck} —4 (k*(1—-cH)+
+ck?(i—wck) (1+€— AN+HIE- 2B {[K*(*—2)—
— (i—wck) (1+¢€)ck] kA (p-1+ k(11— cHc*pr+
+ k=2l +(—Tck) 1+ £)2c*k? — 2k* (c*—2) X (25)
x (i—1ck) (1+¢€)ck+ ck?(i— tck) (1+e—cH}—
4 (K (c*—2)— (i~ ck) (1+ &) ck} {=5K*+
+ kP (14367 — (i— ek) (1+€) k) K*H?=0.

Equation (25) represents the period equation of the thermo-elastic plane wave in
the thermo-elastic thin plate for the symmetrical vibration about the z axis.

If the thickness of the plate is very thin, limit H tends to zero, and equation 25)

reduces to
kK*(2- 2B {k*+ (i— k) (1+ g)ck}—4 (k*(1- A+

(26)
+ck*(—tck) (1+€e— ¢} =0.

Neglecting the terms containing € but retaining the terms containing T°€” we get
from (26)

(8—9¢%)°c*+ 6c%e (32— 60c*+27c*) + (8—9c¢*)’k*—
~2(8-9c*ckt— 6¢2k*(32—60c* +27c*)te+
+(8—9c?)’ Pk’ + 6c2k? (32— 60c>+27c*) e +

+(12-9¢?)*c’k*r’e* =0.

(27)

Equation (27) is the phase velocity — dispersion relation in the dimensionless form
of the thermo-elastic plane wave (for Poisson’s ration o=0.25) in a very thin
thermo-elastic infinite plate when both the effects of coupling and of thermal
relaxation are taken into account. Equation (27) shows that the wave in a thin plate
is dispersive in nature.

Weputt=3,€= 0.05 [3] in (27) and obtain from it for different values of k the
sixth order algebraic equations with real coefficients involving c. The positive root
of it always lies between 0 and 1.
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Table 1
k 0 1 2 225 275 3 3.25 4 5
c 0.94 0.866 0.948 092 0.948 0.974 092 0.984 0.984

For different values of k the values of ¢ are computed in Table 1.
As k tends to infinity equation (27) reduces to give

c®—1.58¢*+0.38¢*+0.21 =0. (28)

Equation (28) shows that as k— ®, ¢ approaches unity.

Particular case: When the relaxation parameter is absent and only the coupling
parameter is taken into account, we get from (27) for different values of k a set of
algebraic equations in ¢ with real coefficients of the same order. The positive root
of ¢ lies between 0 and 1. The values of ¢ are shown in Table 2.

Table 2
k 0 1 2 3
¢ 0.94 0.97 0.97 0.94

From (27) it is found that as k—»®, ¢ agrees with the classical result.
When t=0, £ =0, as k tends to infinity, equation (27) is further reduced to give
(9c*—8)*=0. (29)

The results of Table 1, Table 2 are represented graphically in Fig. 1; it is seen that
as k— o, ¢ approaches 1 and c reduces to the classical result, ¢ =0.94. Thus we
can say that by the introduction of the thermal relaxation parameter the motion of
the thermo-elastic wave is modified. *

VI. GROUP VELOCITY

Since the equation (27) shows that the phase velocity ¢ depends on the
frequency, we are interested to find out the group velocity which plays an
important role in the propagation of energy of wave motion. The rate of change of
frequency with respect to wave number determines the group velocity,

dw/dk=c+k dc/dk.
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Table 3 shows the group velocity corresponding to the values of ¢ and k of the The equation (30) shows that antisymmetric wave propagation is not possible for

thermo-elastic plane wave at a very thin infinite plate from the phase velocity a very thin plate.
— dispersion relation (27), for T=3, €=0.05.
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Fig. 1. Relations between phase-velocity ¢ and wave number k in different cases.

The dashed line parallel to k-axis represents wave velocity in a thin plate in the absence of temperature,
coupling and thermal relaxation terms in thé equation (5) and (6) which correspond to the classical
result, ¢ =0.94.

The dotted curve represents the effect of the thermo-elastic wave in the thin infinite plate when the
temperature and coupling terms in (5) and (6) are taken into account. It is seen that the phase-velocity
has tendency to increase with k and then decrease until it approaches the classical results.

The continuous curve represents the phase-velocity as a function of the wave number in the most
genera] case where temperature, coupling and relaxation parameters are taken into account. It is
observed that the phase velocity decreases at the initial stage and then gradually increases; after that
state it continues in a wave-like nature until it approaches the unity.

Table 3
dw /
S 0.94 0.955 0.959 0.958 1.029
ko 0 1 2 3 4
c 0.94 0.866 0.948 0.974 0.984

VI EXPANSION FOR THE CASE OF A VERY THIN PLATE:
ANTISYMMETRICAL VIBRATION

As symmetric part expanding sinh m.H, sinh m,H, sinh m;H, and cosh mH,
cosh mgH, cosh msH for small value of H and retaining up to H? terms, we obtain

from (22b) . v

[6k*c*p*+{3(2— 2P Bk —k*c*(1+ )+ : . .

+(i—tck) (1+¢) ck}—4(1—c*f?) [Tk*—k*c*(3+B7) + , A
+3(—tck) (1+¢€)ck]} k2H?| (A?—4B)"+

+2K2(2-cpH) (1—¢) {k(c*—2)— (i— vck) (1+¢)ck}k*H*=0.

(30
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