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NOTE OF POSITIONS OF PARTICLES IN CLASSICAL
RELATIVISTIC MECHANICS

V.PAZMA"), Bratislava

The relation between world-lines and the position vector of a particle is studied from
the gauge theoretical point of view. The expressions for the position vector of a free
relativistic particle as well as of two interacting particles described by the To-

. dorov-Komar model are derived under plausible assumptions. The relation between the
physical meaning of basic canonical variables and the choice of a gauge is also discussed.

3AMEYAHHE O HOJOXKEHHAX YACTHIL
B KTACCUYECKOW PEIITUBHCTCKOM MEXAHHKE

B pa6ore B pamxax KanuGpoBOYHOR TEOpHK H3ydaeTCA CQOTHOILEHHE MEXLY
MHMPOBBIMK JIMHUSMU H DAJIHYC-BEKTOPOM YACTHIbI. pn otHocuTenBHO peanucTiveckux
[IPCANIONOXEHUSX  BHIBEACHBI BBIDAXEHHUS IS Panuyc-BeKTOpa CcBOGORHOK pe-
JIATHBHCTCKO# 4acTHIBLI, a TaKKe ABYX B3AUMONEACTBYIOIMX YacCTHL, OMUCHIBACMBIX
B pamkax Monienn Tonoposa~Komapa. O6cyxnaercs Takxe cBa3b MeXny ¢H3HgecKuM
3HAYCHUEM OCHOBHBIX IMHAMMYECKHX HEPEMEHHBIX H BbIGOPOM KanuGpoBKa.

L INTRODUCTION

To outline the problem to be studied in the present paper let us consider the
theory of a free relativistic particle. In the covariant formulation of this theory one
starts from the action integral which is invariant with respect to reparametrizations
T— T’ of the world-lines x* (7). Hence by solving the corresponding equations of
motion we obtain a classical world-line x* (1) the form of which depends upon used
parametrization. Hence the world-line x* (7) has not a primary physical meaning,

In the paper presented the relation between x* (t) and the position of a particle
at a time ¢ will be studied from the gauge theoretical point of view. The paper is
organized as follows. In this section we shall outline the concise classical theory of
* gauge systems. In Sec. II we shall treat a free relativistic particle as a gauge system.
On the basis of some plausible requirements we shall derive the expression for the
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position vector of a considered particle. We shall also show that in quantum theory
the Newton—-Wigner position operator [3] corresponds to the initial value of the
classical position vector. In Sec. III there are analogous considerations as regards
the two interacting particles described by the Todorov—Komar model.

The dynamics of a gauge system is defined by a hamiltonian H=H 0, q),
P=(pu, P2 ... p), a=(q., qz, -.-» .) and by the constraints A, (r,q)=0, a=
1,2, ..., m<n satisfying the relations

A}nu mv = ==7>>

where the symbol {,} denotes the Poisson bracket, u,, and v,,, are certain functions
and summation over repeated indices is understood throughout the paper.
The detailed theory of the system we consider can be found, e.g., in [1, 2]. Here
we shall only list some necessary basic notions and equations.
The equations of motion for a considered system are of the form
df(q, p,t) _3f

QN .mlﬂlfﬂ.\..q mbvu ANV

where Hp, is the Dirac hamiltonian defined as Hp=H + A,A,. Here 4, are arbitrary
functions depending upon the evolution parameter ¢. Hence solutions to (2)
depend upon a choice of 1,. The relations between the solutions q, p correspond-
ing to different choices of A, are the following

@ (t+dt, 1) = g (t+de, A =de (A — 12) {qu (1), A,}+0((dr)?). 3)

(The same equations hold also for p.) The equations (1—3) mean that A, are
generators of certain transformations (gauge transformations) which do not change
the physical state of a considered system.

The evolution of physical quantities cannot be influenced by the choice of A,. It
means that physical quantities must have a zero Poisson bracket with any generator
A, of a corresponding gauge group.

At the end of this section let us consider m functions B, (p, q) for which
det {A,, B,}+#0. In this case we can choose A, in such a way that dB,/dt=0.
However, it means that we can put B, =const and the considered system can be
fully described by 2(n — m) independent variables.

IL A FREE RELATIVISTIC PARTICLE AS A GAUGE SYSTEM

A free relativistic particle can be described by the lagrangian
L=-M@*%)"?  u=0,1,2,3, G

where % =dx/d, 1 is some evolution parameter, x* =g"x,, g*=(+, —, —, =)
and M is the rest mass of a particle.
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Going from L to hamiltonian H we obtain
"H=0 A=p“p,—M?*=0, (5)

where p* =3L/3%,. Now Hp =AA and {x*, x"} ={p*, p"} =0, {x*, p*} =g*". Itis
not difficult to show that A is the generator of reparametrizations of the
world-lines x*(t). Namely, the equations for x* are of the form

dx* u
.mﬂﬂ»? , A} (6)

By a reparametrization T— 1’ the Egs. (6) take the form dx*/dr"=A'{x*, A},
where A dt =A' dt’. Now

x*(z+dr, M) —x* (v +d1t', 1) =
=dr(A’'—1) {x* (1), A} +0((dr)) =
=x*(z+dr, A)—x*(r+dr1, A).

However, the last equations mean that A is indeed the generator of the reparamet-
rization of the world-lines x* (7).

As it was noted in the previous section, physical quantities F have to satisfy
{F, A}=0. One can easily see that x* has no zero Poisson bracket with > It
means that x' (i=1, 2, 3) cannot be regarded as the components of the position
vector of a particle. What quantities q' (i =1, 2, 3) can be identified as a position of
a particle 7 To arrive at that identification we have to impose some requirements on
q'. We conjecture that the following requirements seem to be natural.

() {q',A}=0 for all i. .

(ii) ¢ have to be expressed by means of x, x°, p‘, p°, M and ¢ =1 (velocity of
light) only.

(iii) The transformation properties of g’ are the same as those of aw. Here we
assume x°, p° to be invariant under space rotations and translations; x'— x' + a',
p'— p' under space translations and x’, p’ are vectors under space rotations.

sen

It follows from (ii) and (iii) that ¢’ is of the form
q'=x"+g(p° x°, M, c)p'.

By using (i) we obtain g = b (p°, M, c)— x°/p°. However, we put b = 0 because im
cannot construct a quantity with a dimension of length by means of p°, M, ¢ and p
only. Then

q'=x'-5p". , (M

In quantum theory a wave function ¥ is independent of t (owing to H=0) and
physical states are projected by the equation
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(PP, ~M*)H W =0,
where the operators Z*, satisfy the relations
[Z*, Z7]=[?*, #*]=0, [&*, ] =ihg*.

According to a general rule let us assign to gq' the cnon:a
&g - i o i
9 =% |MA&.=A§GV _+A§cv _&cv%."%.S.IAQ_JI—NWQQ.‘+%A%=vl~§.ﬁ

If now we express q' in terms of canonically conjugate variables (pi=—p'is the
canonically nofcmmﬁ momentum to x') and drop the distinction between covariant
and contravariant indices, we obtain

2=%+ (P ‘2P, IW@ (2%,

where (&, #;]=1h8; and [Z°, P°]=ih.
. After putting & =ih3/3p,, #°=ih3/3p° and substituting p®=(p.p, + M?)'2
into the wave function ¥, the operator 2, can be written in the form

.. O ihp;
wm =iff —— i
Op: 2(pupi + M?)° ®)

N”M Mﬂ”ﬂﬂ. is the position operator obtained first by Newton and Wigner [31
~=. the studied case, all gauge invariant (physical) quantities are integrals of
motion. For this reason the g, has to be interpreted as an “initial” value of the ith
oon.-mozma of the position vector. Now we can ask : What is the dependence of the
posttion upon the time? What is the relation between the time and the evolution
v.mz::mﬁn ©? In our simple example we know that the position x; at the time ¢ is
m_EU~<.m_<n= by x;(t)=q; + tp,/p°. This result can be obtained from the equations
of motion if the gauge condition B = x°~t=01is chosen. Hence if dx%dt = 1 then
T represents the time ¢. Is that choice of the gauge from some point of view
_Bﬁon.wnnw It is not difficult to show that the energy p°=(pip. + M) is the
nMoE:oa generator of physical quantities only for the gauge of the type B=
x I.qloo:mnuo. This assertion is also true for any system of non-interacting
vmwnnwom. Hence we conclude that for a system of non-interacting particles the
ncmucnom xa(t) (@a=1,2, ..., numerate particles) satisfying the equations of
motion are the positions of particles at a time 7 only if x2 = 7 + cons. Then the total
energy P°=p?+ p9+... is the evolution generator of physical quantities.
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IIl. THE TODOROV-KOMAR MODEL

Let us now consider two interacting particles described by the Todorov [5]
— Komar [6] model. The dynamics in this model is defined by two first class

constraints
A, =pi-mi—f(X?)=0 a=1,2, )]

where pZ=pip.., X*=x.x,(g" — P*P*/P?), P*=p’ +p4, and x* =x" - x%.

Here again the quantities x%, p* cannot be identified as positions and momenta
of the considered particles because they have not zero Poisson brackets with the
constraints (9). Let us denote by Q/, P! (i=1, 2, 3) the position and momentum of
the ath particle and impose on Q/, P; the following requirements

() {Q. A,}={P, A,}=0 for all a, b.

(ii) Q., P; have to be expressed by means of the quantities occurring in the
formalism.

(iii) The transformation properties of Q;(P.) are the same as those of xi(p!)
(see (iii) in the previous section). .

Let us now further assume that we know the functions

Qi=Qi(xk, pk, x% pd)  Pi=Pi(xt, pt, x2 p9) (10)

satisfying (i)—(iii). Since Q., P/ are integrals of motion we again interpret them as
“initial” data. One can intuitively expect that after putting B,=x?-x2=0,
B,=x{—1=0 and A,=0 into (10) and solving (10) with respect to x¥, p%, we
obtain the positions and momenta of particles at a time 7, i.e.

X5 (1)=xt(QL PLT),  pt(s)=pt(QL PL ). a1

To make this assertion more plausible let us follow the next consideration. If we
neglect and interaction, i.e. if we put f=0, then we have to obtain the results
presented at the end of the previous section. It means that an evolution generator
of the quantities (11) has to be expressed at f =0 as the sum of the energies of the
considered free particles. In our case the gauge invariant quantity P°=p?+ p2
reduces at f=0 to (pupix + mi)'? + (p2xp2x + m3)"? and it is natural to regard P°
as the total energy of the considered system. Moreover it is not difficult to show
that P° is the evolution generator of the quantities (11). To prove this let us
consider the equations of motion for x*(z), p*(z). They are .

dp:

QR”' k s k
|>¢ﬁ.&n. >vv Qﬂ |>& Aﬁn.\»vv. AHNV

dt

where A, are such that the gauge conditions B,=x]—x3=0, B,=x{—1=0 are
satisfied at any t, i.e. A, =2p3/D, A,=2p{/D where D=4p{p3—2P°F° and
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F°=3f/3P°. Now the Egs. (12) take the form (for brevity we write the equations
for xf, pt only)
dpt

“ptpt-2PFiyD  Z=2p°Gi/D, (13

dxt _
dr
where F{'=08f/3p\ and G¥=23f/3x,,.
Let us now consider the quantity (p?+ p3) where p? are solutions to the
equations A, =B, =0. There holds

3
apt

(p?+p3)=(4p3p% — 2P°F¥)/D =

mwk (pi+p3)=2P°Gl/D.  (14)
1 -

By comparing Egs. (13) and ( 14) one can see that (p?+ p3) is indeed the evolution
generator of the quantities x* (7), ps(t) given by (11).

Concluding this section we note that our calculations are consistent only if det
{B., A,}#0, i.e. in this case only the gauge conditions B, =x{-x$=0, B,=
x{~1=0 are allowed.

IV. CONCLUSION

Although from the formal point of view the theory of gauge systems (and
constrained Hamiltonian systems in general) has been comparatively satisfactorily
elaborated, we believe some of its problems still to be open. One of them is the
identification of quantities (the determination of their physical meaning) having
zero Poisson brackets with all generators of a corresponding gauge group. Another
interesting problem is connected with the choice of a gauge. It seems to be no trivial
question for which choice of gauge conditions the basic dynamical variables 4k, D
represent physical quantities (e.g. positions and momenta of particles). We
conjecture that the study of these and similar problems will enable us to understand
better the theory of constrained systems.

The problem studied in this paper is closely related to the problem of the
localizability of particles. Namely, in quantum theory the quantities g, would be
represented by the operators 9, (the position operators). Eigenvalues and eigen-
functions of 9; would represent possible values of the position and localized states
of a considered particle. The existence of such 9; (satisfying certain natural
requirements) means, roughly speaking, that a considered particle is localizable.
Various aspects of the localizability of particles and the extensive list of papers
dealing with this problem can be found, e.g., in [7].

We are grateful to P. Preina jder for his useful critical comments and
discussions.
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