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TUNNELLING BETWEEN
TWO SUPERCONDUCTORS SEPARATED
BY A DOUBLE SCHOTTKY BARRIER

. JANETKA'), Bratislava

The tunnelling probability through tunnel junctions between two superconductors or
metals scparated by a double Schottky barrier is calculated in the WKB approximation.
Further, the expression for the tunnel current is derived and its dependence on the
applied voltage is numerically calculated for a Pb—CdS—Pb system at various tem-
peratures.

It is shown that the energy gap of superconductors (and mainly its changes, e. g., by
temperature) can be measured not only from the steep increase of current at V=2A/e,
but also at larger voltages, determined by the appearance of the resonance tunnelling
through the double barrier.

TYHHENBHBIN1 JO®EKT LI CIVYAA IBYX CBEPXITPOBOJTHHKOB,
PA3JEJEHHBIX JABOVIHBIM BAPLEPOM MOTKH

B paGoTe Ha OCHOBE METORA BKB Borunciie Ko3hMUHHEHT NPO3pasHOCTH B Clyuac
TYHHEJLHOTO TIEPEXOAa MEXAy nsyMa CBEPXTIPOBORHHMKAMH WA METAIIAMH, PAIACACH-
HbIMH BOFHBIM GapbepoM HIoTkM. BbIBENEHO TAKXKE BRIPAXCHHC ANs TYHHEALHOTO
TOKA M PACUMTAHO YHCIIEHOE 3HAYCHUE JABHCHMOCTH TYHHENRBHOTO NEPEXONA B CHCTEME
Pb—CdS—Pb OT BeaW4MHBI TPUNOKEHRHOTO HAMPIKCHUA ApY PalIMuHbIX TEM-
neparypax. [loka3aHo, 4TO IHEPrETHUECKYIO 1eb CBEPXTIOPOBORHAKOB (M TNIaBHLIMH
06pa3om ee 3aBUCUMOCTD, HANPUMED, OT TEMIEPATYPLI) MOXHO H3MCPATH HE TONLKO M0
CKa4K006pa3HOMy TMOBLILICHHUIO TOKA NpH V=2A/e, HO TaKXe MPH BbICLIKX Had-
PSKEHHAX, KOTOPbIE ONPEAEARIOTCH MOABNEHHEM PEIOHAHCHOTO TYHHEILHOTO adpekTa
8 cnyvae [Bo#HOTO Gapbepa.

I. INTRODUCTION

Electron tunnelling is one of the most useful research methods in solid state
physics. Since Giaever [1] first measured the energy gap of superconductors using
this method, tunnelling has become an important instrument in superconductivity
research, too.
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If a metal is placed in contact with a semiconductor, a potential barrier is created
at the interface between them. If the barrier is thin enough and the temperature
low enough, the current can flow through the barrier due to electron tunnelling,
when a difference in electrical potential between the metal and the semiconductor
is applied. The same is true for metals in the superconducting state, but the current
will be influenced in an important manner by the modified density of the electron
states. ,

The current flowing between two superconductors separated by a thin barrier
due to the tunnelling quasiparticle can be derived in a simple way, only instead of
the density of states in the normal state (usually ¢ = ¢(0) on the Fermi surface) we
have to substitute the modified density of the one particle states in the supercon-
ductor (e. g. in the BCS form) [2]. Provided that the barrier is not very thin, we can
neglect the Josephson contribution to the current.

The shape of the potential barrier is usually not very important for the tunnelling
characteristics. Therefore, the main results can be obtained, e. g., by ‘“edge”
barriers, too [3,4]. Although the transmission probabilities of particles are
modified mainly if a potential well exists between the barriers (although only
relatively to the barriers), most of the phenomena can be described by “‘edge”
potentials with effective widths and heights also in this case. In [3, 4] the resonance
tunnelling was shown to play an important role in some phenomena in solids and
generally in superconductors in magnetic fields [5]. Similar fundamental changes
can be also expected in the tunnel current of a system of two superconductors
separated by double barrier (e. g. by the double Schottky barrier [6]). However, in
this case the applied voltage influences the parameters of the system (barrier
widths, barrier heights). The method taking into account these changes was worked
out in [6, 7] but without including the resonance tunneiling.

In the present paper, the influence of resonance tunnelling on the tunnel current
between normal metals and superconductors is also taken into consideration.

In Sect. I1, the shape of the potential barrier and its dependence on the voltage
for a metal-semiconductor-metal junction is suggested and the tunnelling probabil-
ity in the WKB approximation is calculated. In Sect. II], the expression for the
tunnel current is derived and the dependence of the tunnel current on the voltage
for a Pb—CdC—PB junction is calculated numerically.

II. TUNNELLING THROUGH A DOUBLE BARRIER

Let us consider the case of two metals separated by a thin layer of heavily doped
semiconductor forming Schottky barriers in the neighbourhood of the surface of
both metals [6, 7] (Fig. 1). The distribution of impurities in the barrier (which is
assumed to be homogeneous for a Schottky barrier), as well as the surface states
(which are between the metal and the semiconductor) determine the shape of the
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potential barriers. We shall assume that the height of the “left” Um_ioq. E, remains
constant, that the applied voltage V=Ule is low compared to .ms\m i.e. .QA. E.)
and that the course of the potential barrier from the :_.:iwom is vm_.wcorn (ideal
Schottky barrier). The potential energy in the .?:n:o: is then :m_<ou by “:n
expressions (the energy is measured from the Fermi energy Ca of the “left” meta )

mv+~MN~ —HRI-P.vu'PE for OMHMP_
£
2
@)= Eo-bo Al for h<x<L-—A Q)
2
mlwa [(x—L+A)—Al for L—A<x<L
E

where A,, A. are the widths of the depletion zones defined by

»_uﬁmﬂm (B, +E+ S_s "
ru%w (B +E~ Qis,

E, is the value of the potential energy on the “left” Bogw_-mwammo:a:ﬂoq interface,
e is the absolute value of the electron charge, ¢ is the static a_n_nw:_o constant nm
the semiconductor, { is the Fermi degeneracy energy of :.5 m@S_nﬁw:a:Qov Nis
the donor or acceptor density in the semiconductor, L is the thickness of the

Ey
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0 \ 3 / U
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Fig. 1. The distribution of potential energy in

a metal-semiconductor-metal junction.

semiconductor and x is the distance perpendicular to and measured from the :._o?:
metal-semiconductor interface, U,=eV,, U.=eV,, where .<: V, are the differ-
ences in electrical potential between the metal and the semiconductor Qroqomo_..o
U., U, express the changes of electron energy, whereby Ui+ U= U= m&. Vis
the difference in the electrical potential between the metals. In our calculation we
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restrict ourselves to the case L >4, + A,, where the whidths of the depletion zones
A1, A2 are smaller than the total thickness of the barrier L.

To calculate the tunnel current through the barrier it is necessary to know the
tunnelling probability P through the potential barrier @(x). Mehbod et al. [6]
dealt with the tunnelling probability through a double Schottky barrier. They
calculated the tunnelling probability as a product of the tunnelling probabilities
through the single Schottky barriers and neglected the reflection of the waves
inside the potential well leading to resonance tunnelling (the essential increasing of
the transmission probability for certain energies). For the calculation of the
tunnelling probability we have used the WKB method taking into account the
existence of resonance tunnelling. The tunnelling through a symmetric double
barrier was calculated in the WKB approximation in [8]. That procedure can be
easily generalized for an asymmetric double barrier.

Let us decompose the energy of electrons (measured from the Fermi energy of
the “left” metal) into the part corresponding to the motion of electrons in the
direction parallel to the barrier E- and into the part corresponding to the motion of
electrons perpendicular to the barrier E,, i.e. E=E-+ E,. We introduce the
following notations

eh N\ Ne’L? E,—E.

Eo=3 Awﬁv BT 0B T E : G
" _E+t+ U u _E+t-U
T m.c 'Y 2 = mc »

where m is the electron mass.

In the calculation of the tunnelling probability, we shall distinguish the following
cases

1) u—wu>—€.>—u.

This case corresponds to the situation, where the energy E. is smaller than the
height of the “right” potential barrier and larger than the potential energy in the
potential well. In such a case the tunnelling probability is given by

@ 6, 1/1 AV AN
= 2 - - 4
b= * A@ m_v +AC®W Am_vﬁmw A@vnoi: @

where
O, =exp (@) =exp Qﬂ_ w akv ; )

L
O, =exp (@2) =exp :‘ ﬁ akv,
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The limits of integrations are the turning points of the classical motion of electrons.
For the double Schottky barrier one obtains

:N+ H.\M
Q—HW — 172 _\N+Am_rl.. E_v In —A:_l|mw:~‘_“. A@v
_\N+ =_+m._v 1/2

HI Az_ —e)+ (u— mkv:NAm:N g zw;v.

Nv - >—Es

This case corresponds to the situation, where the energy E, is smaller than the
potential energy on the bottom of the potential well. Tunnelling probability is then
given by

— -2

where

O =exp (@) =exp A cn$ axv. 8y

The meaning of the expression x, is the same as in the previous case. For the
double Schottky barrier one has in this case

H 172
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We shall not give the expression of the tunnelling probability for the energies E.
larger than the height of the “right” potential barrier, because the contribution to
the tunnel current from these values of energies is negligible. For the calculation of
the tunnel current the most important values of energies are those close to the
Fermi energy, E~0, as the product of the probability of the state in one metal
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being occupied and the probability of the state in the other metal beaing free is the
greatest for these values of energies (we consider the case of low temperatures,
E,>kT). .

For the value of energy corresponding to the bottom of the potential well,
€, = uy, the introduced expression of the tunnelling probability is not continuous
(as the WKB approximation for ¢, near u; is not valid). To determine the
tunnelling probability for the energy domain €.~ u we had to solve Schrodinger
equation numerically. However, this domain is a very narrow one. The tunnelling
probability appears in the expression for the tunnel current (eq.17) as an
integrand. For the calculation of the tunnel current, we therefore use expression (4)
also for energies £: ~ u,. The error caused by using expression (4) throughout the
calculation of the tunnel current is negligible.

The WKB approximation is not valid in the neighbourhood of the points x =0,
x=L (Fig. 1), because in these points the potential is sharp-edged. But the
ignorance of this fact does not lead to errors in the tunnel current, as the
contribution of these domains to the tunnelling probability are very small.

In Fig. 2 the function log P is shown for the values of energies &, from the
interval () — w2, u;). In this interval the total energy of the tunnelling electron is
larger than the potential energy on the bottom of the potential well and is smaller
than the height of the potential barrier. It can be seen from this figure, that sharp
resonance peaks arise for energies near the bottom of the potential well.

IIl. CALCULATION OF THE TUNNEL CURRENT
III. 1. Derivation of the formula

If we use the methods of the tunnelling Hamiltonian and of the perturbation
theory, the following formula, describing the amount of electrons which cross from
the “left” superconductor (label A) to the “right” superconductor (label B) per
time unit, can be easily derived [9]

4
x?uuﬂa‘M_ﬂv i atlh s(1 = fo.a— fr. 0)O(Ep a+ Exs— U)+  (10)
ra

+ tp. atik. 6(fp. a— fr. 0)0(Ep. a— Ev 5+ U) +
+ dw. >Gw. wA\n ml..\.? >V&Amu. A m-. B— S +
+ :wl».tw. wA.\.\. >+.\._.. B —v%Amt at m». st Sv .

where uj 4, U}, a are the well-known expressions of the BCS theory of supercon-
ductivity expressing the probability that the state is occupied by a Cooper pair or
free, respectively, E, a=[(P*/2m—£.)*+ Al a]'” is the excitation energy of
electrons in the superconductor, A, . is the energy gap parameter of the
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Fig. 2. The dependence of the tunnelling proba-

bility on the energy of the electron (V=0, Ex=

20meV, E,=2meV, {=1tmeV, L =50 nm,
e.=(En— E.)/ Eu).

-8}
log P

superconductor, {a is the Fermi energy of the “left” superconductor, fp a= f(E,. 4)
is the Fermi distribution function, T, « are tunnelling matrix elements. The form of
the expression with label B is obvious. The summations go through all the
excitation states of both superconductors.

The following form of the tunnelling matrix element is assumed to be valid:

S rr (11)

P(E.)
N =
_ T». -_ #uﬂnm.r AQL B

where g, is the one-dimensional density of states in the direction _uo:um:&o.:_mq ~.o
the potential barrier, P is the tunnelling probability (which we have determined in
the WKB approximation). Kronecker’s delta symbol for the 83@0:@:3. of
momenta parallel to the potential barrier expresses the specular :,mzmao:.:w:o:. -

Substituting expression (11) for | Tp. 4’ into formula (10) m:ﬁ._ replacing the
summation through the discrete values of momenta by the integration through the
quasi-continuous spectrum of energies, we find

Alwmqﬂvm. mmm
X V2, atil, 5(1 = fp.a— fr.8)8(Ep a+ Exs— U) +
+ P(Ep, a— EYul, atih, (fo. a— fr.8)0(Ex.s— Ep.a= U) +
+ P(—Ep a— E)V2 avi s(fr. 5= fr. A)0(Ep.a— Ex 5= U)} =

R p= AE&TFTFTPWBE (P(=E, A~ E) X (12)

n%ﬁm aﬁ_m%. n_mi% amrkllm\,lm.vc?%t?;Ex
(4] —» —m

X 8(Ea + Eg—U)+ P(Ea — m.vthNwA.\.> |\mvﬂwﬁmm —E.—-U)+
+ P(—Ea— E)vavi(fs — fa)8(Ea— Es — U)}, (12)
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where S is the area of the junction, E-=P/2m=k’/2m, Ea.=
[(E+E. )+ AL, ui = [1+(E+ E. 4)E4)/2, vi=[1—-(E+E.. a)Y Ea)/2,
fa=f(Ex)=[exp (Ea/kT)+1]"'. The form of the cxpression with label B is
obvious. In arranging formula (12) we have taken into account that the Fermi
encrgies of both metals are much larger than the factor kT (i. e. Ea, &> kT),
therefore the limits of the integrations with respect 10 E. 4, E .. p dre taken as o.
We have mentioned that the most important values of energies are close to the
Fermi energy and the contribution to the tunnel current from energies much larger
or much smaller than the Fermi energy is negligible. In the following arrangements
we use the substitutions e =E-+E, 4, €8 = E+E, 5:

4amsS (~
ANNHNVJ o

X —— |.\.> L\.NMQAm> + Eg— S + wAm> - m..v:.w—xwﬁ\.) I‘\maamﬁmw —Eas— S +
+ P(~Ea~ E)0ivilfo— f2]8(Ex — Ea = U)}.

Then we have Ea =[ei+ AL)"?, ua=[1+ ea/Ea)/2, vi=[1~ €4/ EA}/2, etc. It can
be seen from the dependence of the factors u”, v* on variables of the integration
Ea, £s that they give the value 1/2 (the remaining functions are even)

Ras= &i %\% dea{P(~ Ex - E)viubx (13)

Rao= s | n:i. %Q. des{P(~Ex—E)1—fa—fa] X (14)

X %Am> + Epg— S.T NwAm> = m.v_w.\.\» |.\.W~%Amm — Ea— S.T
+ P(=Ea— E)(fs — fa]8(Ea — Es - U)}
or

4amS (~ © ©
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X {P(= Ea = E)[1 = f(Ex) - f(Es)]8(Ea + Ea — U)+
+ P(Ea — E)[f(Ea) - f(E5)|6(Es — Ea — U) +
+ NVA|m> - mvH\Ammv |\.A.m>v_%Am> — Eg— Sv s

where o(E)=|E|@(E’— A”)/[E’— A’]'" is the well known expression for the
density of states in the BCS theory. Using f(—E)=1- f(E) and making some
simple rearrangement one has

4ams [~

Ras=Gony ..

dE h "AEP(E - E)oa(E)os(E+ U)x (16)

X[f(E)-f(E+ U)]
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and for the density of the tunnel current

. 4mme [~ -
= Gnhy’ hs amh dEP(E - E)oa(E)es(E + U) X (17)

4ame [~

x[f(E)- f(E+ S_u% N
X[f(E)=f(E+ U)].

dE ﬁ dE. P(E.)0x(E)oa(E + U) x

IL. 2. NUMERICAL CALCULATION

Formula (17) has been used for the numerical calculation of the tunnel current
through a Pb—CdS—Pb junction at voltages V small compared to E./e (i. e.
V< E,/e). The technology of the preparation of the Pb—CdS—Pb junction was
described in [6] and the expression for the tunnel current was derived for two
limiting situations (low and at large voltages). In [6] the derived expression was
verified experimentally, but only for the case of larger voltages, for which the
junction is essentially equivalent to a single Schottky barrier. We have used the
expression (17) for lower voltages, at which the junction is still essentially a double
Schettky barrier. In this case a potential well exists between the barriers and
therefore the tunnelling resonances appear at certain values of energy of the
tunnelling electron (in [6], the existence of the tunnelling resonances was
neglected).

The numerically calculated current-voltage characteristics are shown in Fig. 3 for
a Pb—CdS—Pb tunnel junction at various temperatures. The following values of
parameters have been used in our calculation E,=20meV, E;=2meV, {=
1 meV, L =50 nm. Furthermore U,= U,= U/2 has been assumed to be valid
(both metals are identical) i.e. the potential difference at both interfaces are the
same. The curve 1 in Fig. 3 corresponds to the cutrent voltage characteristics at
T=0K, the energy gap parameter is Ao=1.33 meV. At voltages lower than
2 Ao/ e, the tunnel current between two identical superconductors does not flow, the
growth of the tunnel current begins when the voltage is larger than 2Aq/e. The
curve 2 in Fig. 3 corresponds to the current voltage characteristic at the tempera-
ture T=4.2 K, the energy gap parameter being A = 1.22 meV. In this situation the
tunnel current also flows at voltages lower than 2A/e, but the sharp increase of the
tunnel current begins only at voltages above 2A/e. Both curves are similar at larger
voltages and depend only little on temperature. The rapid growth of the tunnel
current at certain voltages is connected with the resonance tunnelling. The
energies, at which the resonance tunnelling appears, depend only on the shape of
the potential barrier. For the double Schottky barrier with constant values of E,,
Eo, {, L, the resonance. tunnelling depend only on the applied voltage. If

101



Fig. 3. The current-voltage characteristics of
a Pb—CdS—Pb tunnel junction. Curve 1 corres-
ponds to T= 0K, curve 2 to T=4.2 K, curve 3 to
the temperature T=7.2 K at which lead is in the

1 meV, L =50 nm). For comparison, the tunnel-
ling current through a simple Schottky barrier is
illustrated at T=0 K (dashed line).

ouaom&cﬁa&

a resonance appears at the energy — A, the tunnel current increases sharply by next
increasing the applied voltage, because at this energy the density of the occupied
states in the “left”” superconductor is the largest. The moderate drop of the tunnel
current appearing before its increasing is connected with the drop of the tunnelling
probability at the energy A — U, i.e. at the energy, at which the density of the free
states in the “right” superconductor is the largest. It is evident from Fig. 3, that at
lower temperatures (or at larger values of the energy gap parameter) the growth of
the tunnel current due do the resonance tunnelling appears at larger values of the
voltage. From a detailed analysis of the expressions (4), (6), (17) it follows that the
differences in the electrical potential V| — V; (here, the subscripts 1, 2 refer to two
different current-voltage characteristics), at which the sharp increase of the tunnel
current appears, depend on the difference of the energy gap parameter. Neglecting
a very small modification of :_o mrm_un of the potential barrier by the applied
voltage we can find the V,— = 2(A,~ A;)/ e expression to be valid.

By measuring the “steps” in :_n current-voltage characteristics even at large
voltages than V=2A/e one has a useful and exact method for determining the
energy gaps of superconductors, mainly their changes (e. g. the temperature or
magnetic field dependence).

IV. CONSLUSION

Using the WKB approximation the tunnelling probability through a double
barrier, separated by a potential well, has been calculated. The calculated
transmission probability has been used in the calculation of the one-particle tunnel
current between two metals (both in the superconductiong and in the normal state)
separated by the double Schottky barrier. The resulting integral for the tunnel
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normal state (E,=20meV, Ey=2meV, {= )

current has been calculated numerically for a Pb—CdS—Pb junction. We have
shown that the tunnel current at voltages larger than 2A/e is markedly determined
by tunnelling resonances. The voltage at which the “steps” of the tunnel current
appear depends on the energy gap parameter. This can be used for measuring the
energy gap parameter and its temperature dependence.

The measurement of the tunnel current through a double (e. g. Schottky) g_.:o_,
can have some advantages with respect to the single barrier. At first, the width of
the barrier can be a few orders larger (“technological advantage™). Further, the
jumps of the current-voltage characteristics are very sharp (‘“‘measuring advan-
tage*‘). Besides the measurements of the energy gap parameters, the differences of
the energy gap parameters can be exactly measured even from the jumps connected
with the maxima of the tunnelling transmission through the double barrier.

An additional important information can be gained from the differences of
voltage at which the current has a jump-like character. The resonances (maxima of
the transmission through a double barrier) are determined in a very simple way by
9P/3E, =0. However, these expressions are not always very simple.

Therefore, we used an approximate calculation for the resonances from [3]. The
sharp increase of the tunnel current in the normal state occurs if P has a maximum
at E, =0 (for electrons on the Fermi surface). This happens approximately for

'm 12

h E,) A

2mU,\ 2 t ~A3 ev _a
o5 enmn- 2D

(&)
where step-like potentials have been assumed.

By inserting the considered parameters of the double barrier, we obtain the
values of U, at which the steps appear as U, =0.6 meV, U,=3 meV, Ua =
6.2 meV. These values are in good agreement with Fig. 3 (the step at U, =
0.3 meV is not very conspicious.

As in practical cases th [(2mE,/h*)"?A,]=1 the righthand side of (18) depends
mainly on U,/E,, we can make some conclusions as to the two unknown
parameters E, and (L — A, — A,), i. e. effective barrier height and effective well
width, from measurements of the current steps.
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