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DEVELOPMENT OF STRUCTURES
IN THE STATES FAR FROM EQUILIBRIUM
AT EXTERNAL REGULATION

J. KREMPASKY'), R. KVETON?), Bratislava

The present paper deals with the formation of new qualities in inorganic, biological
and social systems that can be reduced to unbalanced thermodynamic systems. Thus, the
possibility to apply laws describing the evolution of unbalanced inorganic systems is
given. The subjective factor, corresponding with external regulation is represented
through the member expressing changes in systems not resulting from internal dynamics.
It has been demonstrated that the presence of this external regulation can either suppress
the number of possible new qualities originating under conditions far from equilibrium,
or on the other hand, increase their number and induce the formation of such structures
not resulting from laws describing the internal dynamics of systems. In connection with
the fact the problem of achieving optimal system management with respect to minimal
system entropy is involved.

PA3BUTHE CTPYKTYP C BHEHIHBIMH PETYJIMPOBAHUEM B COCTOAHMIAX,
JTAJEKHX OT PABHOBECHA '

B ¢raThe PaccMaTpHBAlOTCA 06PA3OBAHMA HOBBIX XaPAKTEPHCTHK B HCOPrAHUUECKHX,
6UONOTHYECKHUX U OBLIECTBEHHBIX CHCTEMAX, KOTOPBIE MOTYT GbITh CBEAEHB! K HEYPaB-
HOBEIIEHHLIM TEPMOJIMHAMUYECKMM CHCTEMaM. ‘ITO [aeT BOIMOXHOCTL [PUMCHHTH
B 3TOM CNy4ae 3aKOHbI, OMUCHIBAIOUINE PA3IBUTHE HEyPaBHOBEILIEHHLIX HEOPTAHUYECKUX
cucrem. CybiieKTHBHBIR (aKTOpP, COOTBETCTBYIOMIMA BHEWHEMY PEryTHPOBARHIO, Mpe-
ACTABAEH MOCPEACTBOM HMeHa, KOTOPLUA BbIPAXAET UIMEHEHHA B CHCTEME, HE SBISIONL-
Wecs Pe3yNTHTATOM BHYTpeHHEH nuHaMuky. TTokazao, 4TO MPHCYTCTBAC ITOTO BHE-
LIHETO PEryMpOBAHUA MOXET WIN NOJABUTL CAECKTP BOIMOKHLIX HOBbIX XapaKTEpHC-
TMK, BOIHHKAIOLIUX B YCNOBHAX, RANEKHX OT COCTOAHUS PABHOBECHA, UM YBENUHUTE HX
YMCNO M BLI3BATH OGPaIOBaHME TAKUX CTPYKTYP, KOTODBIC HE BLITEKAIOT H3 3AKOHOB,
ONMCHIBAIOLAX BHYTPEHHIOW QMHAMHKY CHCTeMbl. B CBA3M C 3THM aktopm cdop-
MyAMpOBaHa MPOGTEMa TOCTHXEHHA ONTHMANUIHOTO yNpaBReHHA CHCTEMOM C y4eTOM
MHHHMANLHONH IHTPOMHMM CHCTEMBL.
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I. INTRODUCTION

Practically in the whole discipline of physics (¢. g. in mechanics, thermics,
electricity, magnetism, in atomic and molecular physics, in chemistry etc.) series of
phenomena are known at present which may be sufficiently qualified as a new
quality formation under conditions far from equalibrium. Prigogine and his
coworkers [1—4] as well as other authors [5—7] elucidated the course of those
processes and assessed criteria for evolution connected with the qualitative system
change. It was found out that all processes of this type occurring in inorganic as well
as in biological and social systems have common features consisting of the so-called
subsystem cooperation arising on a certain level that can be examined by using
a uniform formalism. This knowledge stimulated the formation of synergetics that
has been developing very intensively thanks mainly to Haken and others [8—12].

The aim of synergetics is to yield a general phenomenological theory of the
formation of new qualities in the systems irrespective of nonliving and living ones.
Within synergetics the dynamics of the most perfect systems — systems consisting
of members and characterized by their own intelligence, i. e. social systems — has
been examined very intensively. The particularity of the systems is the possibility of
the direct interference into the system evolution due to the ability of subsystems to
produce negative or positive entropy directly, i. e. owing to the ability to manage
the system.

Though certain conscious interferences within the evolution of the system can be
considered in dynamical equations without dealing with “regulation” is seems to be
useful to analyse processes with evidently discrete factors connected with objec-
tively valid laws describing system dynamics and the factors resulting from the
thinking subject activity. The problem formulated in such a way can immediately
lead to the solution of basically new specific problems, e. g. the problem of optimal
management with the aim to obtain the minimal entropy production, and the most
perfect structure.

Through the indicated problem is topical especially in connection with the
examination of social systems, models of such systems can be created also in the
realm of unviable or biological systems, since also here the question may arise what
structures the system would tend towards due to its internal dynamics if an
intelligent being tried to control this process. In the course of the substance
synthesis on the basis of valid chemical laws the process may be influenced by the
supply or withdrawal of certain substances (catalysts). In case of biological systems
the control may consist, for .instance, in shooting predatory animals, increasing
required species of animals, etc. It is evident that such artificially induced alteration
in the concentration of given atoms, molecules, animals, etc. can immediately bring
about the change of appropriate characteristic potentials, entropy production etc.,
thus producing an alteration in system dynamics. Thus, a new quality formation
becomes the function of objective and subjective factors.
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This article aims at examining the behaviour of certain systems in the presence of
external regulation (especially the so-called constant regulation) and to apply
formal theory to actual inorganic, biological and social regulated systems.

II. DYNAMICAL EQUATIONS AND PRIGOGINE’S PRINCIP

The time evolution of every. physical system can be described by a system of
evolutional equations of the type

#=F(x, 4) (1)

where x is a properly chosen characteristic and 4 is the characteristic parameter.
When after some time of evolution a new quality formation should occur, the
functions F(x, 1) have to be nonlinear. Recently the very frequently examined
so-called generalized Volterra—Lotka systems have been described by the equa-
tion system

Xi=(a;+Z byx;) x; 2

where a; is the characteristic constant, b; are coefficients of the antisymmetric
matrix with zero-diagonal members (b; = —b;). This quality of the coefficients b;
results in the fact that the decrease of one system component during interaction
with the other means an increase of the other component.

The system of equations (2) describes a certain class of biochemical reactions,
simultaneously it describes also the evolution of the viable systems in an “an-
nihilation-generation™ interaction (e. g. predatory animals and victims system).
A certain class of social systems can be described by equations (2). All systems
described by equations (2) with an even number of components can be qualified as
physical systems for which general laws of non-equilibrium thermodynamics are
valid (e. g. Prigogine’s principle of minimal entropy production). Introducing new
variables (e. g. a two-component system) we obtain

X1 X3
p=In . 9 =In . 3)
with x;, and x.. as stationary solutions, since it can be demonstrated [13, 14] that
such a system has at least one kinetic integral (“energy”, it has its Lagrangian, and
that the new variables p, q represent the solution of Hamilton’s equations so that
the mentioned chemical processes and systems of mutual interacting biological
groups are isomorphic with non-equilibrium thermodynamic systems.

The systems described by equations (2) have an interesting feature in that they
exhibit stationary states only for even numbers of components, because in case of
their odd numbers the determinant created from the coefficients b, is zero. But we
shall prove that this limitation can be avoied by external regulation.
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Let us introduce a regulation into systems described by equations (2) arranging
the concentration of system components to be changed by external interference
(e. g. material supply, shooting predatory animals etc.) in the course of time. If we
indicate this induced alteration in a time unit as z;, then the system is described by
equations

=F(x;, A)+z 4)
or in case of Volterra—Lotka systems by equations
= A&.. + M@..\.N\.v.ﬁ + Zi AMV

where the quantities z: are generally the functions of x; and time. If they are
constant, then it is possible by substituting y: = x; + @; to transfer the quation system
(5) into the form of equations not containing explicitly the regulation

=(ai+Zbyy)yi + a:Zbyy, 6)
while the numbers @ have to fulfil the equations

a;a; + @..\Q..Q\. +zi= 0.

It would be possible to demonstrate by an analytical method that also the system
described by equation (6) is a “physical” one, i.e. it is possible to apply also here
the formalism of analytical mechanics, though this statement results also from the
fact that the presence of (constant) components z; in equations (5) changes only the
position of stationary solutions and does not influence “the response” of the system
to small disturbances from these. stationary states. Then it follows that also
constantly regulated Volterra—Lotka systems are isomorphic with the non-
equilibrium thermodynamic systems — showing also a minimum entropy produc-
tion in steady states. This knowledge follows also directly from the equations (5). If
we indicate the production of entropy connected with the internal dynamics of the
system as ¢; and the production of entropy connected with external regulation as
o., the total entropy production o= a; + o. fulfils the condition

because do;/dt<0 and do./dr=0. However, at the minimum
Owmin = Oimin+ O

so that the minimum of entropy production connected with the internal system
dynamics is modified by entropy production nO::aQna with Rm:_m:o: that 8:5
be positive or negative (Fig. 1).
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When in general z; = z:/(x;, ) it can be written

do_do; mSa.«_ mQ«
de &+Mmb % ®)

It is evident that in general do/dz <0 so that the state with the minimum of entropy
production need not be realized at all.

It is obvious that the biochemical, biological and social systems which are not
described by equation system (2) or (5) cannot be a priori qualified as “physical”
systems, though it is possible to discuss the analogy at the “entropy” level. For all
the mentioned systems it is possible to write the equilibrium equation formally for
entropy (if it can be defined for the examined systems)

ma%nla_<.+9+9 . 9)
where i are entropy flows, ¢; is the entropy production owing to the internal system
dynamics and o. is the entropy production due to a regulation. We can draw the
conclusion that due to the objective validity of laws in biological and social systems
as well as in inorganic systems the ¢; must always be larger than 0. If insufficient
outflows of entropy into the environment take place as well as “imperfect”
management, dS/ds>0 can occur, that means, the system develops spontaneously
towards the states with greater entropy and by reaching a bifurcation point
(characterized by the condition 60=0) it changes quantitatively. The evolution
process in those states is then similar to that of inorganic (“physical”) systems.
Then we can suppose that there are stationary states also in such systems, if they
exist at all, characterized by a minimal entropy production.

¢}

Fig. 1. A

By the system regulation, structures can be created in it, as, for instance, with
regard to age, sex, various dispositions of system components etc., creating certain
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subsystems. In this case the entropy production becomes the function of system
structure, i. €. 0= 0;+ 0. = 0(1), where the parameter A characterizes this struc-
ture. In this connection quite naturally the question of “the best’ and “the worst”
regulations arises, corresponding to the absolute minimum or the highest minimum
of entropy production (Fig. 1). These critical states are determined by extremes of
the function o= o(1), i. e. by the condition

do

-5 =0. 10
In the conclusion of the article it will be shown that the above mentioned problem
has a nontrivial solution under certain conditions.

I1l. THE STRUCTURES IN VOLTERRA—LOTKA SYSTEMS
WITH REGULATION

It is known that after the deviation from the stationary state unregulated
Volterra—Lotka systems show the so-called oscillation around the stable centre
[15]). It is a time-periodical concentration change of one component and a similar
change with a certain phase shift of the second component concentration. Equation
(2) for two components rewritten after the introduction of the non-dimensional
quantities (X = bxi/a2, Xo=bxz/a,, A= ai/a, T=azt, b= b2 =b) in the form

VN_"\»A~|Xqu_ Aﬂwmv
MN~”Ax_IHvx~ AHH._UV

has the non-trivial stationary solution X;, =1 a X;, = 1. At a small vo:,:.cw:o: of
the stationary state (y1=X,—Xi,) equation (11.a) has the solution y, =

Y10 exp (pt), where p= +iVA 50 that the already mentioned “oscillation” arises
around the stable centre.

The two component Volterra—Lotka system with constant external regulation is
described by equations (R = bzi/a3, S = bz:/aia,)

Xi=A(1-X)X,+R
VNNHAVA_ - vann_vm.

(12. a)
(12.b)

The stationary solutions of this equation system differ from the values X, =1 and
X, =1, that is why also the parameter p characterizing the time evolution of the
system after shifting from the balance state will not be entirely imaginary. It is
determined by the relations

pra=—at(@—F)" a=1[(1-X.)-A(- X,
B=A[1-(Xi. + X..)].
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The pair of solutions p, and p, can obtain the values characteristic for all the
types of structures arising generally in two-component systems in dependence on
the external regulation (the parameters R and §), i. e. stable and unstable nodes,
stable and unstable foci, unstable saddle and oscillation around the stable centre. In
dependence on stationary solution values the respective cases are illustrated in the
phase plane in Fig. 2.

In Figs. 3 and 4 the oscillation alternation around the stable centre on the stable
node is illustrated, in the first case in the phase plane, in the other by means of
evolutionary curves.

In this connection a remarkable fact has been found namely that the oscillation
process could be suppressed or eventually induced also by a mere constant
regulation (i. e. by constant supply or withdrawal of suitable substances) in the
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system of the Volterra—Lotka type with frequencies that are functions of
regulation parameters (R, S). The above mentioned simple analyses provides
a very simple model for understanding many interesting qualities of the viable
world (e. g. an increase of the heartbeat on receiving certain substances, the
beginning or end of characteristic periodical cycles ets.).

It has already been mentioned that the Volterra—Lotka systems with the odd
number of components have not a stationary solution, i.e. they cannot be
characterized by a time stable “structure”. However, it can easily be proved that

the situation changes after introducing regulation into such a system. It is, for .

instance, possible to choose all regulating components zero except one of them and
we shall find out immediately that the system has a stationary solution. Thus it
follows that all constantly managed Volterra—Lotka systems can be characterized
by a time stabilized structure. Some very interesting results can be obtained using
a “periodic” regulation. Let us suppose that the regulation parameters R and §
change with time according to the real parts of the functions

R=Ae"" (13. a)
S=Be'“™*®, (13.b)

Then the solutions o~m ancwmanoz (12) for small perturbations are

(A’+ B’0*)"” wi(1+40)"
k.”H.T!IIinF cos (wt + ﬁ:v.*.ix (14.a)

A’+ B'w’
X qﬂv’v COs ANS.H.T €-v+ cee
>N+mNEN 172

X2 = H+A§~.¢8Nﬁnom (wt+ @u+ (14.b)

o(ws+40?) (A + B*0?)
(0é— 0*) (w5 —40?)

+ cos Qwt+ @) +...
where wo=(A)"? and @u1, @12, ..., P21, P2, are phases.

It is seen that two interesting effects arise in this case, i. e. the generation of
higher harmonics and the resonance effect when the angle frequency w is equal to

the basic angle frequency of the system wo=(A)'” and the same phenomena at
higher harmonics.

This formalism allows to solve also the reciprocal problem: how to choose the
regulation parameters if the desired structures have ta be realized.

IV. THE STRUCTURES IN SOCIAL SYSTEMS

The applications of physical formalism used so far for the investigation of social
processes have been based upon the process analogy in inorganic and living
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systems. It can be shown that considering a certain class of social processes not only
analogy but also isomorphism concerned. A social system from the point of view of
its members belongs to certain groups according to opinions (e. g. political,
religious, etc.) The increase of members in a given group having uniform opinions
is determined partly by a natural population growth and partly by the influx of
members from the other groups resulting from the interaction of the i-group
members with the members n; of the j-group. Then the increase is proportional to
the product of appropriate concentrations while the i-group increase caused by this
interaction means a j-group decrease. The dynamics of such a social system is
described by equation system (2) so that there are Volterra—Lotka systems in
question.

The social system belongs to the category of the managed systems. In our case it
can be expressed through the choice of certain measures by which additional group
members can be obtained from the ranks of other groups or the rank of the
“nonorganized”. The development of such systems is determined by equation
system (5) and the conclusions we have found in the preceding paragraph are valid
for them.

Weidlich and Haag [16] examine social systems described by the “master
equation” having the following form

o = S MW= S W (15)
i J

where n. is the mean value of individuals of the subsystem a, belonging to the
i-group. The parameters w; represent the transit probability of individuals from
the j-group into the i-group within a time unit. This probability can be the function
of the proper numbers n, or other parameters. ‘

In [16] this formalism is applied to the investigation of a two-types population
migration in two parts of a big city. The probability w is postulated in the form

wii = A exp (aa + ban: + cantj) (16. a)

wii = A exp (—da — banti — cany) (16.b)

where a, is a natural preferential factor, b, is an internal parameter of sympathy
(expressing the effort of a given population group to live together in a certain part
of the town) and c, is an external sympathy parameter (expressing the effort of
a given population group to live together with the other group in the same part of
the town).

When we develop the functions (16) into series and concentrate upon the first
approximation, we shall obtain again equations describing Volterra—Lotka sys-
tems.

After inducing the notation u=ai+bimox +ciny, v=a+ bamox + c2nay,
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where x = m/my=(m,— my)/my, y = n/no=(n— no)/no, the equation system can
be written with regard to function form (16) in the form (m,+m,= 2my,
n+n=2ng)

£=2A[sh (u)—x ch (u)] (17. a)
y=2A[sh (v)—y ch (v)]. (17.v)

The quantities /m and 7 represent population numbers in respective parts of the
town. It can be proved by a numerical solution of equations (17) that all basic types
of structures characteristic for two-component Volterra—Lotka systems can exist
in the examined systems. Now we shall examine how the situation will change after
introducing regulation into such systems. The dynamics of these systems upon
external regulation will be described by equations

£=2A[sh (u)—x ch (u)]+ R (18. wv
y=2A[sh (v)—ych (v)]+S. (18.b)

The mathematical analysis of equations without regulating components shows
the position of particular stationary solutions in the phase plane (x, y) which
corresponds to points in Fig. 5. Introducing regulation the position of these points,

N \.\ /.\
\.\ \, /N

‘% ./
XA

Fig. 5.

their number and character (i. e. if the stable or unstable solution is in question)
generally change. In Figs. 6 and 7 we have presented a case of the alteration of
three stable points in one excentrically situated stable centre, and in Figs. 8 and
9 “the deformation” of solutions with five points induced by regulation is
illustrated.
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V. THE OPTIMAL SCHEME OF REGULATION

We shall now show that the Prigogine principle, which is valid for external
(constantly) regulated systems, can be used in the solution of the problem of an
optimization of the regulation scheme.

For the sake of simplicity let us suppose a model homogeneous scheme, i. €.
a system divided into subsystems according to a constant modulus x. Such a system
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is schematically drawn in Fig. 10 (for x =3). The interaction between the subsys-
tems is accompanied by positive entropy production. We suppose that each
subsystem from the level # is in interaction with only x subsystems in the (n +1)
level. (When considering social systems, this supposition is well understood). Let us

designate the positive entropy production by a pair-of interactions by the letter “a> :
and let us suppose it to be the same for all levels. In order to get an analytical -

e 0

L . ® 1

/NN
.\w/o .\./. ...... o\_./. .\ _o/o n Fig. 10. Parameter: x =3

solution we express the entropy production in an elementary cell on the last level as
“ax” instead of ax(x —1)/2. (This simplification is not necessary in a computer
calculation). Then the total positive entropy production can be expressed in the
form

.N:.r.'ﬂ

o=a(x+x'+. . +x")=ax ——

(19)

The presence of a structure in a system can manifest itself in a better regulation,
i.e. in the production of a negative entropy. Let us designate as “b™ the negative
entropy production on zero level (i. e. the “head” of the system produces “b”
negative entropy within a time unit). We have x subsystems on the first level, so we
can suppose that the production of an *““xb” negative entropy is connected with the
subsystem. It seems to be more realistic (from the point of view of a possible
application to social systems) to use an ‘‘ability” coefficient & and express this
negative entropy production as “kxb”. If we do the same on the other levels

(supposing k being constant), we obtain a formula for the total negative entropy
production in the form

n+1
SutEH+§+»~a~+.:+»a«=vu|vm@»vﬂul_'h (20)
The total (positive and negative) entropy production in the system thus is
: .H:...—lH ﬁ\ﬁHva+_|H )
= = —_ H
o=o0+x nAk — a kr — 1 v. (21)
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where a = b/a is a new characteristic constant. An optimal scheme of regulation is
determined by a minimum of entropy production, i. e. by a condition do/dx =0.
The solution must fulfil the condition

H:&._ . M

—=N (22)

where N is the total number of members of a given system.

The solution can be simplified by supposing x**'>1 and (kx)**'>1, which is
always correct in large systems. Thus the optimal modulus of a given system fulfils
the equation

B xIn’x _
\ﬁ:.— N/ln x) —: Z ~= \ﬂ

a. (23)

We see that the solution of an optimal regulation of a system needs in a simple
case two characteristic constants: k and a. It can be seen before the analysis of
equation (23) that the system cannot by optimized at k> 1. At the values k<1 the
solution can be obtained as the intersection of straight lines y = a with the curves
corresponding to the left-hand sides of expression (23). They are drawn in Fig. 11
(for N= HOJ. The first intersection corresponds to the maximum, the second to the
minimum of the entropy production. For some intervals of the values of the
constant k and a no solution exists. )
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Fig. 11. Parameters: N=10° k=0.2, 0.3, 0.7, 0 1 2 3 4 5
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These results can be applied to social systems. The positive entropy production is
connected with every process of directives, planes and aims transfer as well as the
process of a mutual coordination of individuals within the framework of one basic
‘“cell”. On the other hand, every “head” of the cell has the ability to produce
negative entropy. This ability manifests itself through new ideas, aims, etc., which
help to improve the organization of the system.
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(It results from the observation of more social systems that the two basic
constants k and a are approximately: k=0.8 and a=50. It follows then for the
system N = 10° that the optimal modulus is x =8—9, which is not a very unrealistic
result).

VI. CONCLUDING REMARKS

It was said that the more mathematics there is in a certain science, the more
perfect the science. However, the mathematics as a science cannot solve by itself
the problem of the mathematization of the systems of biological and social sciences,
as it contains no basis for setting up equations indispensable for the description of
the given phenomena. Physics, investigating the laws and principles of the
generalized motion not only in inorganic, but also in biological and social systems,
could become an integrating factor in this situation. Thus there arises the possibility
of applying quantitative methods to the solution of problems also in the branches of
sciences of living systems, including social systems.
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