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* SIZE EFFECTS IN SOME TRANSPORT
" COEFFICIENTS FOR DOUBLE-LAYER THIN
METALLIC FILMS

F.KHATER?"), Bratislava

A theoretical analysis, based on the Fuchs-Sondheimer formalism, is given for the
transport coefficients — electrical conductivity, thermal conductivity, - thermoelectric
power and Peltier coefficient — of double-layer thin metallic films. Two " different
relaxation times are assumed for the bulk scattering of the conduction electrons in the
layers. The relaxation times are taken as functions of energy, 7.~ ¢* and 7.~ ¢” for the
lower (base) and the upper layers, respectively. The electron scattering on surfaces or
interface is described by the parameters P, Q. The parameters P (Pio, Pio, Py, Ps,) ate
the Fuchs parameters of the specular reflection on the three surfaces (two outer surfaces
and the interface between the layers)."The parameter Q corresponds to the fraction of

- the conduction electrons refracted at the interface. A numerical calculation was made for
the electrical conductivity and thermoelectric power in the case of a total transmission of
~ the conduction electrons at the interface between the layers.

PA3MEPHBIE 3OOEKTHI B TPAHCTIOPTHBIX KO3®OUIMEHTAX
... ]ISl ABYXCJIOMHBIX TOHKMX METAJUIMYECKHX ILIEHOK

' B pabore Ha ocHose thopmanuaMa Pyxca-3oHureiMepa OpOBENEH TEOPETHIECKHi

"~ aHanu3 TPaHCTIOPTHBIX KOXPPHIMEHTOB ~ NEKTPOIPOBOHOCTH, YRENLHONK TeMIONpo-

BOJTHOCTH, TEPMOINIEKTPHIECKOTO Hafpsikeust ¥ Koo umenra [TensToe — na pByxc-

NOHHBIX META/LTHIECKHX TUTEHOK. AHANTH3 CRENaH B NPEAIONOXEHAH, YTO A/ 06 BEMHO-

- 1O PaccesiHUA EKTPOHOB HPOBORHMMOCTH B CJI0AX CYLIECTBYIOT B Pa3NHYHBIX BpeMeHH

. . . penakcaum. [Ipenonaraercs, 4T0 BpeMS PeNaKCALMH 3aBUCHT OT IHEPTHH 10 HOpMY-

naM T, ~€" ¥ T~ £° Q% HwkHed (6a3uCHON) B ANA BepXHell IIEHOK COOTBETCTBEHHO.

PaccesiHMe 3/eKTPOHOB Ha NMOBEPXHOCTH IUIEHKH K Ha pajielie COEB ONACRHO MPH

noMou napametpos’ P, Q, KOTOpblie MPEACTABNAIOT cobo# mapameTpul Pyxca pms

3epKaNbHBLIX OTPaXeHHH Ha TPeX MOBEPXHOCTAX (fiBe BHEIHMe TIOBEPXHOCTH U pasfien
06OHX CNIOEB) H JONIO NEKTPOHOB POBOJMMOCTH, KOTOPBIE H3MEHIIH HaNpaBieHye HA -

rpasuue paitena oGoux croes. [IpoBefien Takke aHAIN3 YHCICHHBIX PacyeToB 3nEK-

TPONPOBORMMOCTH ¥ TEPMOINEKTPHIECKOTO HATPSDKEHMA B CITyYae, KOTHA SNEKTPOHBI

.TIPOBOJMMOCTH MOJHOCTHIO POXOAAT Yepe3 IPaHKNy Pa3fena OGOHX CIIOEB.
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L. INTRODUCTION

When the thickness of a metal film is comparable to the bulk mean free path of
the conduction electrons, the surface of the film contributes significantly to the
scattering of electrons. This leads to the size effects. The analysis of the size effects
was carried out by Fuchs [1}, Sondheimer [2] and :many others by solving the
Boltzmann transport equation with appropriate boundary conditions. An extension
of their model was made, e.g., by Lucas [3, 4] who introduced two specularity
parameters P, and P, to characterize surface scattering at the outer surfaces of
double-layer thin metallic films. Lucas assumed that the internal interface
between the layers does not cause any reflection or additional scattering of the
conduction electrons. The average longitudinal electrical conductivity of doub-
le-layer thin metallic films was calculated in [5], where the scattering at the
interface between the layers was taken into account. The authors in [5] used simple
boundary conditions which were a generalization of the well-known Fuchs bound-
ary conditions. They confined their calculation to the simplest case when the film
was subjected only to an external electric field applied in the direction parallel to
the surface. Verma and Jain [6, 7] studied the size effects relating to transport
coefficients in a single metallic film within the framework of the Fuchs theory.
Their analysis concerns a single film which is subjected to an electric field and
a temperature gradient parallel to the film surface. They deal with a'special case
where both surfaces had the same specularity parameter. Later the transport
cocfficients for this model were recalculated [8, 9] for the case when the two
surfaces have different specularity parameters. e ;

The purpose of this paper is to study the transport coefficients of double-layer

thin metallic films taking into account the films subjected to an external electric

field & and a temperature gradient VT in the x-direction parallel to the film
surface. The theoretical analysis in this paper utilizes two relaxation times with the
energy dependence v~ ¢” and 7,~ ¢” for the lower (base) and the upper layers,
respectively. The values of a and # depend on the predominant scattering
mechanism (@, = —0.5 for lattice scattering, a, B=1.5 for ionized impurity

scattering and @, f=0 for neutral defects scattering). For simplicity  we shall -

investigate only the case when a =g.

IL EXPRESSIONS FOR TRANSPORT COEFFICIENTS
_ IN A BULK METAL

For a bulk metal subjected to an external electric field &, and a temperature
gradient VT in the x-direction, the current density J, and the heat flux U, are given
by the expressions: : ‘
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where e is the elementary change (e>>0), m the electronic, mass, v, E”w <oa_uw“w~u Mm
the conduction electrons in the x-direction, A .90 Planck constant, f oﬁ_nm -
tion function of the conduction electrons o_uﬁ._Ema ?.oE the _wo_ﬁmshg— M..ﬂ ov:m :
equation and f the equilibrium Fermi-Dirac distribution function of the ele 4

! (3)
wuee (= O/kaT) +1°

¢ is the electronic energy, ¢ is the chemical potential, k5 is 9.@ wo_ﬁBE.E 8“&““
and T is the absolute temperature. The parameter tis a ?E\”no: o e
temperature. The current density J, and the heat flux U, can be rewritten n

general form, such that

m
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The coefficients Ro, R: and R can be obtained from the equations for J, and U..
Thus using the basic definitions of the transport coefficients we get the results for
the bulk metal as follows: .

(i) The bulk electrical conductivity

O = &Ry Amv
(ii) The bulk thermal conductivity
o R ™
K o ReT
(iii) The bulk thermoelectric power
| s=%(3) ®)
8 eT \R,
(iv) The bulk m.o_man_ coefficient
_L(R) o)
B e -c .

1. EXPRESSIONS FOR TRANSPORT COEFFICIENTS
IN DOUBLE-LAYER THIN METALLIC FILMS

i \ i ic film whose surfaces are parallel to
Let us consider a double-layer thin BoS:.n. fi . |
the plane z =0, subjected to an external electric field &, and temperature gradient
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VT in the x-dierction (see Figure 1). The electron distribution function f=
f°+ g (v, z) obeys the Boltzmann equation, where g (v, z) is the small deviation
from equilibrium caused by the external thermodynamic forces, i.e. by & andVT.

2 g g .
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Fig. 1. Reflection and refraction of conduction electrons by the outer layer surfaces and the interface.

According to Bezak and Krempasky [10), the distribution functions g1, g3,
gr and g; satisfy the boundary conditions

97 = Pigi at z=-a_

g: = Pygs at z=b
9" 5P2g"HhQug™ , at z=0

QWHWEQM.TO_Na at z=0,

where Q.= Q= Q, and the distribution functions gi, g; and g7, g5 are the
functions of the conduction electrons with z-components of the positive and
negative velocities, respectively. Here 1, 2 refers, nmmvowiﬁ_%, to the lower (base)
layer whose thickness is a, and the upper layer whose thickness is 5.

The parameters Pio, Py, P,; and P, are called the Fuchs parameters, they
characterize the specularity of the reflection of the conduction electrons from the
surfaces and the interface. Because of the roughness of the interface, P;; need not
be equal to P,,. The parameter Q characterizes the probability that an electron is
refracted on the interface according to the law of refraction.

The Boltzmann equation for the conduction electrons has the form:

%9.9_ WmA 1e-¢ mlq.v _
Sw~+al«é~ Je m.a+m T ox/’ 11)
where E, = &, +W wl\« is the internal electric field.

Solving the Boltzmann transport equations (four equations, i.e. two for each’
layer) for the conduction electrons with respect to the boundary conditions (10),
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(10)

we can obtain the average current density J. and average heat flux U for the
double-layer thin metallic film, respectively, by the formulae:

L=l (a0 EF(K, P, )+ bonE:F(K, P, Q)+
o[ () Go)” () @6 (7 i) ek 2 00
20 G () wan (7 5) weral. 0
() ) (5 (- wm mcs . 0]+
+atsl(5) e (B o
+ (22 (-riamy (2 D) Rk P, 2. (13)

We have taken into consideration that the layers may be of different EmS_mv. $O
we consider different effective masses m;, m,, Fermi velocities vg, cm..an_wxm.:wu
lengths L,, L, (or bulk relaxation times 7, ~&* and 7.~ ¢”) and a_n.nRoEn densities
n;, n;. The Fermi surface for each layer is assumed to be spherical.

The functions F(K, P, Q) and ¥i(K, P, Q) are defined as follows:

F(K, P, QuT — b dxi(xi = xi1) (1= A) {(1 - Pwo) + D7'(1 + ProA) X

4K,
x (X + 85_ . (14)
w(K, P, Qn? +.N%v |G|M%c_ _‘ dm (-5 (1—A) ? —Po)+

+ D' (1+ PiA) Ax_ +CQY,; A:ﬁza

Iww.h_ QH— Akul.ﬁwvw AA#l\»v AAHI@—QV..T
+ D' (1+ PoA) (Xi+ CQYY)}) mu,ﬁ; v (15)
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where N_.mm the reduced thickness of the lower (base) layer, K; =a/L,. Similarly we
.~.m<o defined the functions F(K, P, Q) and ¥y(K, P, Q) by changing in the
integrals (14), (15) the index 1 (2) by the index 2 (1), the parameter a (8) by
B AQ.V‘ .9@ symbol A (B) by the symbol B (A) and C by C.

It is interesting to see how the functions F,, F>, ¥, and ¥ behave in the limit of
large values of K; and K, (asymptotic approximation):

F (K, P, @)=1-211 Amﬁw Pa)2) (16)
E (K, P, Q)=1->11 AMNM B2 (17)
Y (K,P,Q)=1~ 5 w__ , (18)
¥, (K, P, Q)=1 1%, 19)

Here we have used the notations:

Xi={1-P,+ AP, (1—Py)— B*Py (P (1-P)+ Q)+

+ AB*Py, (Q*— PPyi) (1= Pu)} - (20)
Y,=-(1-B)(1+BPy). (1)
c = “_. - >~T5~U_N - wumvuomuw. + >~w-v_aﬁ~o A.Mw_nmﬁ - ONV & ANNV

The quantities A, B and C are , ~

Ao (- o) =ew (~pona) @)

b\ b
B=exp (- vu - b ‘
P A ﬂN_CNN_ exp A L, cos @v ANAV
_ Lymyv,
th_§~$ . . 25)

.¢<a have maﬁan_:ona the angle ©; such that v;, = vx;, x; =cos 6, i=1, 2. Compar-
ing equations (4), (12) and (5), (13) we find that

Hnm@ vQ
xc\ Q-TW NNN.J—AN.*«OVL.T&-T@ MW'N“WAN‘NVVOV. AN@V

Ry~ 5 () ()" () oy m . .0

m 3m;
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b AmmVu Awmv v Ama.sv (PIETY) W (K, P, Q). (7

Ta+b\h m; 3m;
__a kT b kT’
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(28)

From the relations for Ry, Ry and Ry (f, B represent film and bulk
respectively) we obtain the following transport coefficients for the case of the
double-layer thin metallic film:

(1) Electrical conductivity
b

a .
o=—17 OFi (K, P, Q)+ omF: (K, P, Q). (29)
(2) Thermal conductivity
a b
K=—"2 KmF: (K, P, Q)+ 17 Km:F: (K, P, Q). (30)

(3) Thermoelectric power

S w(K, P,0) \ An%f HV +2 5wk, P, 0) \ @P _v

S b (31)
Fi(K, P, Q)+~ CR: (K, P, Q) .
(4) Peltier coefficient
(K, P, Q) /(3 +1) +2 crlwx, 2,0 /(F+1)
&= 5 : , . (32)
F(K, P, Q)+ CE(X, P, Q)

IV. NUMERICAL RESULTS

We will consider a model (special case of the dovble-layer thin metallic film),
b oo there Is na scatfering of fhe o = v the nternal interface



mo:amao%:_a?:&oa.m__ﬁw.mov,m@.mov,G_Aw.w.ovma
Y,(K, P, Q) are defined as follows: o

m:ﬁw Qu,T y%m \ _&Q:Sc|3 cuoaéi (33)
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4K: Jo

—c'(1- \Sm_ . . (34)

F(K, P, ovuT = dxfr—af —B)(2-A*(1-B)~

w(K, P, Qu:_ +wumv |GI~M_!V h dx(x -2’ (1- A)x

X(1- C(1— B) T + m%&ﬂhvvv +Auaw+ Dy

Xh_ dx(1-x*) A*(1-C(1-B))—

:ﬁmhﬁc b h L dx(1 ~¥) B(1 |>~L . (35)-

w(K, P, oT?R%*ﬁml: h &Q.JJ (1-B) (2—

- A1 l.mv —C'(1-A? A_ +%\m@vvv +

+ 22D [" 41— ) BR-24%1- B)- (1 - AY) -

cnllﬁww 1) h_ dx(1-#) AX(1-B) (1~ C(1 |$v_... | (36)

The dependences of the conductivity ratio g,/0s, and the thermoelectric power
ratio S/ Sz on the thickness ratio b/a for L,/L,=10 and K, = 10, 5, 1, 0.5 were
calculated using a computer. The results are shown in Figures (2, 3, 4). These
dependences were calculated for the three scattering mechanisms : scattering of the
conduction eiectrons by !att nons, inrdzed impurities and neutral defeste i e,

B

e

0. K0

Q2+

v . o R 00 bh

Fig. 2. Variation of 0x/ 0s, with b/afor K,=10,5,1,0.5and L,/L,=10.

(b) For very large values of the upper layer thickness (b—®) Op:/ Os: muua
Su2/Se: tends to L,/L, and unity, respectively, for K;>1 as well as mOm Ki<1.

The model can be viewed for instance as a rough physical realization of an
amalgamated gold film, where the lower (base) w.:a upper layers represent the pure
gold layer and the amalgamated layer, respectively. Therefore a.ﬁ gold layer is
a reliable detector of mercury. This follows from A_o. noamnw»c._o .En:m:oo of Eo.
amnalgamated (upper-layer) on the transport coefficients of the film.
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Fig. 4. Variation of S,/S,,, with blafor the values a=g8=1.5.

V. CONCLUSION

By the above analysis we have obtained general as well as asymptotic expressions

for the transport coefficients of a double-layer thin metallic film, taking into
account that the film is subjected to an external field &, and a parallel temperature
gradient VT. The analysis has been carried out using a general energy dependence
of the relaxation time in the two layers of the film. We have generalized the results
obtained by Bezik et al. [5] and have calculated also the thermal conductivity,
thermoelectric power and Peltier coefficient for a double-layer thin metallic film.
The results show that for a double-layer thin metallic, film, the transport
coefficients exhibit size effects, except for the thermoelectric power and the Peltier
coefficient if the predominant scattering of the conduction electrons is by lattice
phonons. This has a simple physical explanation, namely, if @ =g= —0.5, we | ~ve
a constant bulk mean free path independent of energy. The analysis has shown that
the ratio of the film to bulk electronic thermal conductivity in metals behaves in the
same manner as the analogical ratio for the electrical conductivity. They are
independent of the type of scattering which is dominating. The same is valid for the
Peltier coefficient and thermoelectric power, but they have a strong dependency on
the type of the dominating scattering. From variations of the film electrical

PRRTYS PR T PN | thy gy A R LT TS R SAPTR PE

however, the theory will become somewhat more complicated because of the usual
presence of some surface change at the interfaces, the bending of the bands and the
possibility of strong charge fluctuations.

REFERENCES

[1] Fuchs, K.: Proc. Cambridge Phil. Soc., 34 (1938), 100.

[2] Sondheimer, E. H.: Advanc. Phys. 1 (1952), 1.

{3] Lucas, M. S. P.: Thin Solid Films 2 (1968), 337.

[4] Lucas, M. S. P.: Thin Solid Films 7 (1971), 435.

[5] Bezék, V., Kedro, M., Pevala, A.: Thin Solid Films 23 (1974), 305.
[6] Verma, B. S., Jain, G. C.: Thin Solid Films 10 (1972), 71.

{7] Verma, B. §!, Jain, G. C.: Thin Solid Films 15 (1973), 191.

[8] Ijaz-ur-Rahman: J. Appl. Phys. 50 (1979), 6556.

[9] Ijaz-ur-Rahman: J. Appl. Phys. 52 (1981), 5859.
(10} Bez4k, V., Krempasky, J.: Czech. J. Phys. B 18 (1968), 1264.

Received June 14th, 1982

53



