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LOWER BOUND FOR THE VALUE
| OF A WIENER PATH INTEGRAL
: §,E>zoz-roa>r _.ou.mz?»r

M. KOLIBIAR!), Bratislava

The lower bound for the value of the path integral expressing the averaged canonical
density matrix -of a non-interacting electron gas in a Gaussian random potentia] is
estimated. The idea of the paper is to apply the convexity theorem {Jensen’s inequality)
to the double-integral (non-local) potential-energy term of the “action” in the exponent
of the path integral. Under the assumption that the Potential energy autocorrelation
function is of the type exp (—(r, — r)*/L?), the lower bound of the path integral is
derived in the form of a sum of exactly solvable path integrals with quadratic non-local
\ potentials. Comparison with numerical Monte Carlo results is given.
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(i.e. the statistical operator). Such a mode] is used in the quantum theory of
disordered solids [1—7).

Let the brackets ( ) denote averaging with respect to the potential V(r). The,
assuming that ( V(r)) =0, we define the dispersion n*= (( V() - (V())*) =
(V*(r)) and the autocorrelation function W(r',r") = V(') V(). As usually,
we define the parameter B by the relation B=1/ksT (ks = Koottemann and T is the
absolute temperature).

As shown in [1], the averaged canonical “one-particle” density matrix can be
written as the path integralover the Wiener measure :

(CE o)) = ["Dpe(u] exp{ 4 [ 2wy au+ o)
+MMM~ hﬂa:\ h&a#:ﬂ«??.\vn?:v;.

where r. =r(0) and r, =r(hf) are the “starting” and the “ending” points of the
path integration, respectively, Obviously, the autocorrelation function W plays the
role of a non-local potential here. o

The basic problem is to elaborate an effective way for computing the path
integral (1). This problem was shown to be solvable analytically only when the
autocorrelation function (ie. the non-local potential in (1)) was replaced by
a quadratic function:

Wil ) =1—( —ryr2, @

Here L denotes the correlation length. The approximation (2) was introduced by
Bezdk [1]. The evaluation of the path integral (1) for W= W, was carried out by
various methods [1—6], which gave the formula

(Clbirne) = (55m) (o) )

sinh v,

x%%maxvﬁl.sei.qgw. (T —r.) w.

4h tanh %QAQV

where ws(B) Hm AWWV:J Ye(B) Hw BPhaws(B) .

Provided that (r' —r')2<L?, the function (2) can be considered as a reasonable
approximation of some more realistic autocorrelation functions, say

meom ().

.H\N

We assume that the random potentia] V(@) is statistically uniform and isotropic.
Then the autocorrelation function W depends only on the distance |r' —r|. It
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should be pointed out that the linear term in the Taylor expansion of a general
autocorrelation function with respect to |r' —r’| vanishes for physical reasons 7.
It can easily be seen that under the assumptions

L*>WB/m
and
L*>(x, —r,)

approximation [7]. :

For simplicity we confine ourselves to the diagonal elements of the averaged
density matrix ( 1) whenr, =r,, although the methods presented here are valid for
the more general case when r,, r, are arbitrary. Since the system is statistically
invariant with respect to the translations, the statistical sum per unit volume Z(g)
given simply by ( C(B,r,r)) is independent of r. .

Let (C,(B,rs,1.)) and (C(B.rs, 1)) denote, respectively, the path-integral (1)
848%05&% to the cases W= W, and W=w..

In Sect. II the inequality

(CB,r, 1) >exp Am MNVADQ..,% for f—s oo ©)

is proved. Thus ( C,) differs greatly from (C.) for sufficiently low temperatures.
Nevertheless, if we are interested in the free energy (and other thermodynamic
quantities) of gas, this difference does only lead to a small correction because of the
logarithmic relation F= —ksTInZ. However, path integrals like (1) frequently
occur also :bobkoh»lSBh.BS\: in some problems concerning disordered struc-
tures and random processes [7]. In case of random processes B corresponds to the

evaluation of the path integral (1) for W= w,. These results are compared with
formula (3), which is exact for W= W, and with the r.hs. of inequality (5). As
such calculations require some considerable amount of computer time, we have
restricted ourselves 8.0:0.&55:&03_ problems.
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0. THE RELATION BETWEEN
(C(B,r,0)) AND (C(B,r,1))

;OGMWM,__W_%W Sw?m. wd S W.(r',r"). Therefore (CB, rs, r)<({CAB,r,, r.))
us (Cy) given by (3 is a lower bound for (C.). The ai f thi ion i ind
& bettey e I (C) 1m of this section is to fing

m.ss.omcnm:m the dimensionless quantities

a=a(p)= /¥

=b(p)=_L
mL? 2 @l@ﬁhvl/\mah

and substituting

u=hgt, r= /\9!”%@

in (1), we obtain for W=W, the integral

e(l)=g,

e, 2] exp ﬁ fw h 60 dr+

Aoa.?m.%u?lﬁvi

+ b2 h _ de, ‘ﬁ . drexp| I%EQ_T@_Q%i.

o~

6)

The approximation (2) means the replacing of the integral

L= \h de, h &%%mnau@?vlae%d

in the exponent of the path integral (6) by the integral

Lo={ aa [ dufs ~a((t) - ()]

Odimu:m_w L=1 and I,>0 for any function (path) e(?), while I, may also be
Degative. The idea of the mo=o<&cm calculations is based on replacing I, by
a functional of €(?) which is Jess than L but positive for any o(r). o

We shall use Jensen’s inequality*) (well-known also as « the convexity theorem")
for the “potential energy” term in the exponent of path integral (6):

.\M a:.h dtexp mlan@.ﬁ_vle?vﬁwgv ﬁlanh &.h.a&@.@bl@?&ﬁ ..

—_—_—
'} An exact and general formulation of this theorem is given e.g. in [12],
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Using this inequality we obtain the following relation:

(CBrny>
wﬁ_mwzwvs bﬂ”@?@z seﬁlwb %3&;&%7&%_ ds, x
x[ 4o () ~e (1} = ()" [ a (o) x
xen{-3[ €0} 5 K en [=ne* [ a6 [ ateta) -e(w) =
=) [ atecn exp{-2[ ¢y ar-

—na [" a1, [ ane () -e(wy).

;o_m&vmﬁrmaomnm_mwnoo:ro same type as (1) for W= W, Thus, formula (3)
can be applied and the inequality .

m \?Q b aVn \3
C(B,r,0))= v IIA v 7
¢ 8., ))3 Oi&w W_i sinh (a V) ™
is obtained. For the one-dimensional problem we have the result
m \12>= p2n h/\M
C(B,x,x)) = !v —_— . 7'
(CB.x0))2(5 50 Dty (7

(We remind that g =g (B), b=b(B).)
Obviously, this procedure can be applied without difficulties to the more general

case when r.#r,. .
- To compare the estimate (7) or (7') for large values of B with (C,) given by

formula (3) we rewrite function (3) for r. =r, in the form

372 3
(Ce(B,r,1)) = A M%v Amm :rawasv e (the three dimensional case)
1/2 b , ) )
(G(B,x,x)) = A%v 3 nrn (@) €”* (the one dimensional case)

The sum of the series in (7), (7’) can be estimated by the values of their largest
‘terms since all the terms are nonnegative. Using the Stirling’s formula

n!=V2mn AMV,MQ.V uivano lim E(n) H 1
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and the expansion

_uﬁibulﬁlwﬁwf:.v lifj<1

2

2

(CBxx)>em (5 2E)(C512) for poseo )
It is worth mentioning that thig result cannot be further im T i
considering more (or eventually all) the non-negligible terms M%ﬂﬂﬂ%ﬁ“ﬂﬂw:ﬂqﬂ%
The reason is that the “width” of the maximum (on the “n-scale”) is of the waon.
.om ab: Any multiplicative factor of such an order of magnitude does not seem to be
~Eﬁon.mu.~ enough in the r.h.s. of relations (5) and (5"), since the estimates based on
Jensen’s Inequality may give values which are sti]] too far from the exact ones
Hcamoau the values of the rhs of inequalities (7), (7’) obtained by vnlozac.
numerically :x.w Summation are much smaller than those for (C.) obtained cm
a Monte Carlo Integration in Sect. IfT (Fig. 1). That is why we have refrained D.O_M
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seeking such a refinement as, e.g., the use of a better asymptotic formula for the
series in (7), (7) in the low temperature limit (B—x).

L. RESULTS OF NUMERICAL INTEGRATING

This section refers to a Monte Carlo integration procedure for the path integral
(1) in the one-dimensional case : .

gAQAuwkv.Hsvv = Aﬁ.v
H\%él,@ﬁa?v_ oxvﬁlmh Wmn?v du

x(0)=x, 5 sap -
oL [ du, s ?Eisv.ié&.
0 0

The term, written symbolically as %*(u) corresponds to the conditional Wiener
measure. From the mathematical point of view expression (1') is the functional
integral with respect to the conditional Wiener measure over the space of all the
functions continuous on the interval [0, hB]. Integral (1') can be computed

numerically by several methods [8—10].

For our purposes the following procedure was chosen:

1. With the fixed starting point x, and the ending point x, the path x (1) can be
generated as a random walk of a Brownian particle. Let x’, x" be the positions of
the Brownian particle at the times ¢/, t', respectively (The quantity h B has the
dimension of a time variable.) Then the position of the particle at the time

" Te[t, '] (we assume #'<¢") is a normally distributed random variable with the

mean value

x(1) Hmﬂ.w.lm [("—Dx' +(z—1) x"]

and the variance

=19 (E-t)h
QMAH‘VAI N:I:\ M.

Therefore the value h/2m plays the role of a diffusion coefficient of the Brownian
motion. To generate the normally distributed random numbers, an algorithm based
on the central limit theorem was used. Having this algorithm at hand we can
subsequently divide the “time” interval [0, hB] t0 2, 4, 8, 16,..., 2¢ subintervals
and generate the positions of the particle at the end points of these subintervals so
that a discretization of the random path of the particle is obtained.

It should be emphasized that this analogy with the Brownian motion is purely
mathematical. It has nothing to do with the real physical motion of the particle.
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2. Having generated such an approximation of the path with straightline sections,
We can evaluate the functiong)

2

w??zusl%% \o = \o ¥ Eisv,isi. ®)

This can be done using a suijtable numerical quadrature. In our case the two--
dimensional trapezium rule turned out to operate well. The calculations were made
for W=W.= w(|x, ~x2). A table of values of the function e was useq instead
of evaluating e~ Tepeatedly. The procedure was speeded up by about 2.5 times by
this simple trick. )

3. The steps 1 and 2 are repeated N-times. The arithmetical mean of the

N values of the functiona] (8') multiplied by ‘the quantity Awhﬁmvx

€xp AIN!M“ 8 (x — RLNV is the approximation of the integral (1') with the standard

D 172 .
deviation ALWZ v » Where D(F) is the variance of the functional (8'). D(F) can

be estimated empirically during the computations so that the procedure can be
stopped when the desired value of the standard deviation is achieved.

In addition to the €rror arising from the statistical nature of the Monte Carlo
method, there is an error due to the approximation of the path by the table of the
Positions of the Brownian particle at a finite number of times and to the subsequent
numerical quadrature to obtain the values (8'). This error can be reduced by

using the Siemens 4004/150 computer system.
Obviously, the variance of the functional (8’) increases rapidly with the increase

o:roacmnaﬁwam.}mimm moEa empirically, the method is practicaily of no use for
nB8=10. .

ﬂﬁn@w&&?ni" Mecctron, §=0.1eV, L=1 nm, 2 nm and 3 nm are presented
in Fig. 1 where the functions : . :

—1n LGB, x,x)) - S(B o
f(f)=In i £(B)=in NQMMWWV{V rp

(with S(B) denoting the r.h.s, of (7)) are plotted. The function £,(8) is represented
by the symbols x » O, A corresponding to the correlation lengths . =3 nm, 2:nm,
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1 nm, respectively. The function fB) is represented by continuous ::om_._ ﬁﬂo
reduce the influence of the statistical errors m:m to 9@. Monte O.wao Eo:.oa,% ﬁrn
computations were carried out several times with various starting numbers for the
r generator. . .
Bﬂwﬂ—”“““_ anczm for (C.) are in a very mo.oa agreement 2..9 (3),ie. fi=0
provided that L*>W8/m. As can be seen in m_u_m Hu co:w functions f,(B), MNAMV
seem to be almost linear even for > 8,> th\m ?:9. mc._SEm Bo), mzro._m.m aﬁdo
formula (3) fails in this case. As to the function f2(B) this linearity was <n”_ _M_m ﬁw
the “exercise in calculus” mentioned in Sect. II. Cnmoncsuwo_% we m:u— =oH nO».lo
verify the linear shape of the function H(B) .mOn. p— *, since the M: m:anv
method is inapplicable in the low-temperature limit. .:.a.__:mm.n mmwnm@mo ~8~ of f;
is consistent with the results of E. Haluika ?.: ocﬂmiaa in a differen im_.vﬁ. m
The author is indebted to V. Bez4k for continuous stimulation ..E,n_ support o

this work.
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