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ENTROPIES OF THE ALKALI METALS
IN THE LIQUID PHASE FROM
THE CONSIDERATION OF THE IONIC
ATMOSPHERE

A. K. CHAKRABATI'), P. NAG (NEE' PAL)"), Calcutta

Free energies of five alkali metals in the liquid phase have been calculated by the
technique of the Debye—~Hiickel theory for strong electrolytes in solutions. The
distribution formula of Dutta —Bagchi is used here and also the value of the relative
permittivity for the medium in the Poisson equation is taken to be unity. The free energy
thus calculated is added to the additional contribution made to the free energy by the
translational motion of the alkali metals.to obtain the total free energy. For experimental
verification, the numerical values of entropy in the liquid phase and also entropy changes
at the melting points for the alkali metals are calculated. The agreement between the
calculated and the experimental values in both cases are fairly good.

IHTPOIIMM MEJNOYHBIX METAJUIOB B XUIKON ®A3E
C TOYKM 3PEHUA KOHHOU ATMOC®EPHI

B pa6oTe Ha OCHOBE TEOPHM 3MEKTPOIMTHYECKOH nposopumocTy [leGas — Xiokens
NS CRIBHBIX NIEKTPOJIMTOB B PaCTBOPAX PaccUMTaHbl CBOGOHBIE IHEPIUM NATH LIENOY-
HbIX MeTannoB B xakoi dase. [py 3TOM Hcnonb3osanack GoOpMyna pacnpeneneHus
lyrra—Barxs, ¥ 3Ha4YEHHE OTHOCHTENBHOH MUANCKTPUYESCKON TPOHUIAEMOCTU Al
cpenas! B ypasrenny [lyaccona pasno enmnwie. flonysennas Takum obpazom cBoGonnas
sHeprus goGanneHa K fo6aBke, NpefcTapsgiome# co60# CBOGONHYIO IHEPrHIO MOCTYNA-
TENILHOIO [IBIDKEHMSA ILENIOYHBIX METAJLIOB, M TAKHM 06pa30oM MOMydeHa TIoNHas CBOGO-
Hast 3Heprus. C LENbI0 IKCIEPHMEHTANILHON IIPOBEPKH NOJYYEHHbIX Pe3yNLTATOB pacc-
YUTaHbI YHCHEHHBIC 3HAYCHUS IHTPOIMK B XXKHAKO#K (hase, a TaKKe HIMEHEHHS IHTPOIIMK
B TOYKaX IIABNEHNSA IUETOYHBIX MeTa/NoB. B o6oux cryyasx oGHapyXeHO JOBONLHOE
xopoliiee COrfiache KaHHBIX pacueTa C IKCHEPHMEHTANEHBIMH 3HAYEHUSAMHY.

1. INTRODUCTION

In the Debye —Hiickel -[1] theory of ionic solutions, jons are distributed
according to the Boltzmann distribution formula and the effect of the coulombian
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interactions only (neglecting interactions of the Van der Waals type) is taken into
account through the Poisson equation. In this theory the notion of the ionic
atmosphere is introduced, which plays an important role. This notion of the ionic
atmosphere is also introduced in other theories of the assembly of charged particles
like plasma etc. According to experimental evidence, substances like alkali metals
exist as free ions and therefore the notion of the ionic atmosphere is important.
Hence for studying the thermodynamic properties of alkali metals with due
consideration for the coulombian and short-range forces, the Debye —Hiickel
theory of ionic solutions with necessary modifications [2—9] should be used.

It is easy to see that in the Debye — Hiickel theory, the effect of the coulombian
interactions and in the modified versions [2—9] hard core repulsive terms in
addition to the coulombian interactions are considered for solute ions and the
effect of the solvent is considered through the introduction of the relative
permittivity in the Poisson equation. In these theories the molecular (microscopic)
structure of the solute is used but at the same time a macroscopic picture is taken
for the solvent through the relative permittivity. Thus the Debye — Hiickel theory
of jonic solutions in its many varient forms suffers from the inconsistency that while
it considers a microscopic structure for the solute ions, a macroscopic picture for
the solvent is assumed through the introduction of the relative permittivity. It has
been pointed out earlier by Chakrabarti {10, 11] and Pal—Chakrabarti[12,
13, 14] that the inconsistency between the partly macroscopic approach does not
arise if the value of the relative permittivity is taken to be one as in the case of pure
metals existing in crystalline form. To put the relative permittivity equal to
1 towards the fact that for the metals such choice is natural, moreover it is the case
of a pure metal and naturally without any solvent. This is the main difference with
the Debye — Hiickel theory, which is used for solutions with a permittivity much
greater than 1, where for the uses of solvent relative permittivity has universally
proved true. Earlier works [10-—14] regarding this problem use the original
Debye —Hiickel theory and after replacing further the Boitzmann distribution
formula by that of Dutta [7] have been particularly successful. In the present paper
essentially the same idea is considered and the contribution of the ionic atmosphere
in the expression of the free energy for an assembly of charged particles like ions
and electrons is calculated with due consideration for the coulombian and hard core
repulsive interactions using the distribution formula of Dutta —Bagchi [3]. The free
energy thus calculated is added to the contribution made to the free energy by the
translational motion of the alkali metals to obtain the total free energy. From this
free energy numerical values of entropy of the liquid alkali metals at different
temperatures above the melting points up to 1000 K are calculated. Also values of
entropy at the melting points are calculated for liquid metals and then substracted
from the experimental values of entropy for solid metals at the Bo_::m voEnm 8
obtain entropy changes. ;
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The entire motivation of this work is to examine how far the simple model
obtained from that of the Debye — Hiickel theory with the necessary modification
mentioned above succeeds in explaining thermodynamic behaviours of the alkali
metals in the liquid phase. It is clearly revealed that the comparisons between the
calculated and the experimental values in all the cases are fairly good. This may be
looked upon as evidence of the suitability of models with the notion of the ion
atmosphere.

II. CALCULATIONS

In the present treatment the assembly of ions and electrons is considered and
calculations are made in an ionic atmosphere in which charged particles are
distributed according to the Dutta —Bagchi [3] distribution formula. The complete
derivation of the Dutta —Bagchi [3] distribution formula has been given following
a method developed by Dutta [15] in connection with the statistical investigations
of real gases. Since in the present work we are studying the monovalent metals, the
Dutta —Bagchi [3] distribution formula is given by

$_ 1/b.
Y “exp (vsteW,/kT)+1" O

Here n? are the number densities of positive ions or electrons at a point where the
electrostatic potential is ¥,.
4 .

b: Nwh@ r:)’ are the exclusion volumes of the mutual close approach between
two like ions or two electrons, r. being the radii of positive ions or electrons. v. are
parameters of distribution. e, k and T have their usual significance. As some times
assumed in the theory, when ¥, — 0, the distribution is, on average, uniform, i.e.,

. 1/b.

" onﬁ (vo)+1° @

As in the Debye —Hiickel theory, the analysis has been carried out only for the
system in which the average electrostatic potential ¥, would be small so that

eV, < kT or (eW,)/kT<1. 3)

Based on this assumption, the exp (e%./kT) of equation (1) is expanded and ali
terms except the first two terms are neglected. Thus in equation (1)
ny= L
" bilexp (vi) exp (£ eW,/kT) +1]

=n*[1F(1—n*b:) (eW,/kT)]. (4)
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The charge density g, at the point in the atmosphere of the ion, where the potential
is ¥, will be given by

.m‘ulzwlan_. 6]

Substituting (4) into (5), applying the condition of neutrality and simplifying we get

o=~ (n 4 )~ () b+ (D). ©

Now as in the theory of Debye — Hiickel, the potential for the interionic field
satisfies the Poisson equation

2y — & .
VY, = m €))

or .

VA = () = (1Yl + ()] ®

The use of higher degree terms in g, in (5) will make equation (8) non linear. In
that case we shall face the difficulty regarding the consistency of equation (8) itself
(16, 17]. In this paper we have taken n*=n"=n

£

&, =the relative permittivity = P 1, )

where £=8.85418x 107"* F/m is the permittivity of free space, so that

. VW, = W, (10)
where
2

= mewﬂ n[2—n(b.+bJ)]. (11)

It is more convenient to introduce a dimensionless variable and we shall take

ew,

A= *T - (12)
The Poisson equation reduces to
1d A Nn;v
s A 13
. E=x. (14
The solution of the Poisson equation, subject to the boundary conditions .
¥,—0 as rox (15)
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and
d¥v, . e s
% 4, ds= chchmm theorem) (16)
is
e’x e Ve *
>|§»§?+m_v £ an
where
=X , (18)

and a is the radius of a sphere whose volume is equal to the volume per conduction
electron given by

47n

V_1_4na’ or a2 Vs
N n 3 '

(19)

Then using the usual process of charging, the expression for the available electric
work is given by [7]

W= 1%% T_c+§v|=+ xw u (20)

For one mole n*=n""!

charging all the ions is

= n = N= Avogadro number, the total work required in

..zmx ~ ca J
NW= anxay In(1+ ya)—yxa+ 7 21)
On adding the contribution made to the free energy by the translational motion
[18, 19] of the ions we obtain an expression for the free energy of the alkali metals
in the pure state as

3 2
A=NkTn ___Ni TR laaMMMVu T;Trxs +cw w
TAAEV »i M
er

(22)

where M is the molar mass of metals, gr is the density of metals at temperature T,

e' is the base of the logarithm and h is the Planck’s constant.

Entropy

s=-(83)- e
or

3 NW Ne'y
, S=—Nkln ﬁ Zv Nﬂvu\ng +MZ~« ﬁ T +A.§chN.Q +R&v@ (24)

‘
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Table 1

Entropies of the alkali metals in liquid phase S in joules per degree-mole

400 K 500 K 600 K 700 K 800 K 900 K 1000 K r. {m]

Calculated — 50.434 55957 60.434 64.191 67.404 70.149 0.90x107'°
Li

Accepted - 49.848 55.287 59.798 63.664 67.069 70.111

(Expt.)

Calculated 67.438 74.283 79.534 83.789 87.429 90.429 93.621 1.15x107"
Na

Accepted 67291 74216 79.718 84.270 88.153 91.554 94.596

(Expt.)

Calculated 80.726 87.529 92943 97.223 10097 104.16 uoq.ou 1.46x 107"
K

Accepted 80.885 87.822 93.365 97.985 101.96 105.47 108.64

(Expt.)

Calculated  101.96 108.59 113.74 11794 12149 12498 128.10 1.67x10°"
Cs

Accepted 101.46 108.49 114.11 118.89 123.02 126.66 129.92

(Expt.)

and
.W..\"%\Ilm: ANMV

where Sy is the entropy change of melting (latent heat of fusion); S; is the entropy
of liquid metals at the melting point and S; is the entropy of solid metals at the

melting point. The subscripts f and i denote the saturated liquid and the saturated
solid phase, respectively.

1. RESULTS

From formula (24) the numerical values of entropy are calculated at different
temperatures above the melting points up to 1000K (i.e.,from 500K to 1000K for
lithium and from 400 K to 1000 K for sodium, potasium and cesium). The densities
or of the liquid alkali metals at temperatures T are taken from Weast [20]). The
ionic radii are taken from Tosi and Fumi [21]. Both the calculated and the

experimental values [22] of S are given in Table 1. Also from formula (24) the .

numerical values of the entropy (S;) of liquid metals at their melting points are
calculated. The values of entropy thus calculated are subtracted from the experi-
mental values {22, 23] of the entropy (S:) of solid metals to obtain entropy changes
(S4) (Equ. 25). In Table 2 the calculated and the experimental values of the
entropy changes are given.
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Table 2

Entropy changes of melting

S, (expt. 8, (calc Sy (expt. Sy (calc

Miesl Tonctins 1 wm_MQV._ 3 w.m aow-_ J xmwﬂo_w 3 xmm aow‘_
Li 453.7 38.074 44.289 6.276 6215
Na 371.0 55.856 62.983 7.113 7.127
K 336.4 67.572 74.696 7.113 7.124
Rb 312.6 76.776 83.807 7.029 7.031
Cs 301.5 85.354 92.361 6.904 7.007

IV. CONCLUSION

The objective of the work described here is to calculate the entropy of liquid
alkali metals by considering the ionic atmosphere in which charged particles are
distributed according to the distribution formula of Dutta —Bagchi. The notion of
the light mobile electrons and the heavier relatively immobile positively charged
particles is considered. In this connection the following points may be noted. It is
well known that the metal atoms part with their valence electrons which move
throughout the volume like a gas known as electron gas or electron cloud. When
the isolated atoms condense to form a metal, the core electrons remain bound to
the nucleus to form the metallic ion, but the valence electrons are allowed to
wander far away from their parent atoms. It is the attraction between the positively
charged ions and the negatively charged electron gas and the repulsive force
between the same charged ions which keep the configuration of the body. The
development of the present model is similar to that of the Debye — Hiickel theory
after replacing the Boltzmann distribution formula by that of Dutta —Bagchi with
the modification that the coulombian interaction between the positively charged
ions and the negatively charged electron gas in addition to the hard core repulsive
interaction is considered. To avoid an inconsistency between a partly microscopic
and a partly macroscopic approach, the value of the dielectric constant, D, is taken
to be unity, i.e. the solvent is absent. The excellent agreement between the
calculated and the accepted values indicates that the present modified model
developed here favours the theory and is undoubtedly a promising attempt to
account for studying the thermodynamic properties of substances in the liquid
phase.
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