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SEMI-EMPIRICAL EQUATION OF STATE
OF NON-IDEAL PLASMA

M. Z>mq.=.—Cm>.. S. VEIS**, Bratislava

Calculations of the €quation of the state for a fully ionized nondegenerate plasma,
based on the application of a Tadial distribution function are obtained by combining the

HOXYIMIIUPHIECKOE YPABHEHME COCTOSHUS HEMIEANBHOM
TIA3MBI

L INTRODUCTION

Plasma with a low number of particles in the Debye sphere (No<1) is called
Coulomb non-ideal, It is obtained at high concentrations of charged particles and
comparatively low temperatures. This plasma can be wel] characterized by the ratio
of the mean potential and mean kinetic energy of particles — the coefficient of
nonideality y, or the plasma parameter ¢ having in the nondegenerate case
following form :

permittivity, k the Boltzmann constant, T temperature, 7 the mean distance of

charged particles, rp the Debye screening radius.
—
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In the case of plasma with one-time ionized atoms

_\N
o= A!mo» i), F=(2n)"'"", y=0.21 No™, u=3.54 ",
2ne
where the concentrations of electrons and ijons are equal; n, =p, = p.
Recently, on investigating mainly the stability [1-4] and phase changes [5—~7}in
non-ideal plasma, there has been an increasing interest in the equation of state in

P. Debye and E. Hiickel have already considered the fundamental ther-
modynamics of the ideal plasma. Their theory, however, cannot be directly
generalized for the calculation of further approximations via concentration. N, N.
Bogolyubov has elaborated ap exacting method of correlation functions that

T in plasma does not fall below the mean particle distance 7 with increasing .

non-ideality, we modify the pair distribution function for higher y and so express
the equation of state of nondegenerate fully ionized plasma. )

IL METHODS

T. L. Hill derived [20] a direct connection among the pressure p, the radial
distribution f(r) and the potential energy of the interaction o(r):

unv&lqu...Ma FE\Q waem.w?vhlb .ridr, 2)
Pas(r) = Z.Zoe* /4 meor 3)
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Fig. 1. Radia} distribution function fas: in the Fig. 2. Hlustration of the limitation of the

Debye—Hiicke] approximation (D), ip the ap-  Coulomb potential by the correction function

proximation of pair collisions (P), combined P~ F(r) according to (6a, b); tin ... (6a), arceg ...
D), modified r,, — Twe = r(Int); for =1, (6b).

where a, b = e, i (electrons, mosm. in plasma with one-time jonized atoms), and r is
the distance. In hijs considerations in (18] Yu. L. Klimontovich suggested to

kinetic equation for the non-idea] plasma in the approximation of pair collisions
Then f,, has the form (Fig. 1)

ety =exp [ - e 1 (=rir)], @

consistent with the Boltzmann distribution law with 2 pseudopotential equal to the
Debye screened potential ¢°, (f*-P =exp (- Z.ep®/kT)). The pressure in the
Debye approximation (when n.=p, = n) is obtained by linearizing f*° apq

substitution into €quation (2):

P”=2nkT (1-4). (5)

Substituting the complete radial function f£;® into the expression (2) we state

that the integrals corresponding to the atractive forces (a#b) are divergent for
r—0, where the character of an” iS determined by the unscreened Coulomp
potential. Thus, the form of f., given by N:Bo::::.n: is suitable for the
repulsive action but Jess so for the attractive one. From thijs aspect fa5° will be
modified in two ways :

i) The expression (4) for the case a#p will be linearized - for’— =1
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~ZZa.—e """, where g, = e’ /4meokT is the known Coulomb scattering paramet-

er. (The linearization IS consistent with the polarization or the Debye approx-

a) F(r)y=r/q, for Osr<g, (6a)
Fr=1 r>aq,
b) Fi=Zarctg L, (ig 2).
4 2ao (6b)
f25” in this case shifts to the form:
far=exp 5.1 ZoZa. w F(r) niL. (7

For convergence of the expression )it is sufficient to substitute f£, into
integrals corresponding to attractive forces, but jt is natura] to introduce the
limitation of the Coulomb potential into the repulsive action, too. In additon the
limitation can be introduced also into the potentia] appearing in the derivative

The process ii) is suitable for 5 numerical solution of the problem. The constant
o (6) is determined so that the calculated pressure for low valyes of the coefficient
of non-ideality y must be consistent with the pressure p® (5) for the ideal plasma.

The forms of fes" have been treated only for the purpose of the qualitative
convergence of pressure in the region r—(, But in the quantitative €xpression of
Pressurg it is just the region of high r (integration via r’/dr) that plays an important
role. Here we meet with the problem of the effective Screening distance Tin, which
in non-ideal plasma is not €qual to rp. With ¥ =0.08 we have T'o =7 and for higher
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Fig. 4. Demonstration of approximation of the

integral used in correlation (11). The integral of

the dashed line from 0to 2x, is substituted for the

asma according to varioys ap-  integral of the solid line x[1 - €xp Y] from 0 to oo,

Proximations and authors, B tmu=n""_ysed |n addition the radia] function f,, (x) and the

in analytic caleulations: b . “Debye” gas with absolute value of the pair correlation function
triple collisions — our approximation 9). Ge.(x) are illustrated,

magnitude of r,, with the aid of 3 model of plasma a5 5 nonideal gas with triple
collisions with an interaction potential in the form:

1
G@.?v?ﬂ €XP (= ry/rin) . )]
L
From the Boltzmann kinetic equation for 8as with triple collisions it follows ;

H@lue.u\r.ﬁ' Hu Hﬂlaﬁuu\»ﬂl .—u Qu-.w .

fi(r)y=1+n ‘\

{r3)

distribution function (4) and (7) by substituting r, — r,, with the retained form of
fas (Fig. 1). We obtain expression (7) in the form:

fif'=exp [ - 27,0, LF(r) exp (=rira)]. (10)

Analytic solution (j)

Let there be f,, = ot for the attractive action (q# b,a,b=e, i) and f,, =
e for the repulsive action (q = b). The index int symbolizes the substitution

"> = . From equation (2), after substituting x = r/ 7o it follows that the pressure
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- -1 LT B PR ;PEV
p=2nkT o:xﬂ?«o+h T QGA xowa k:.z xdx;. (11)

For the ideal plasma, when Tie = rp, the pressure shifts to the equation :

<ot {1 [ w20 oo
u m:wﬂ* 12713 ), 1 oan el xdx;p. (12)

With a very low plasma parameter u the exponential expression in (12) can be
linearized, the entire integral obtains the value of u and the pressure p°® shifts
into p® (5). Therefore, the expression p”~° presents a higher approximation for
the pressure of the ideal plasma (u<1) than that of Debye—Hiickel.

hood of the point x, = r,,/ To, Fig. 4. (Round the point xo = 0 the function cannot be
developed as all derivatives are zero except the first one). The comparison of the
obtained analytic expressions for [ (i, re=n"""y and I (y, ry, = ro) with accurate
numerical calculations of the integrals (for u, selected from the interval
(0.08; 3.42), interesting for us) shows that already on using the second order of
the Taylor expansion there is a deviation in the determination of the integrals less
than 5 % (in the determination of pressure ~1%). Let us presume that Fint
remains at the level of the mean distance of particles, as it has been discussed. More
precisely, let rn=n""= 7, (the mean distance of particles of the same kind), line
»a“ in Fig. 3. Then we obtain, within the second order approximation of the Taylor
expansion from expression (11), for the pressure :

473 43 _ 2
0.21u 0.004u w (13)

- e
p u?ST 4.1 1+0.134+0.0085"

It represents the solid line (analytic) in Ew. 5. On extrapolating the Debye
screening distance into non-ideal plasma 7., = rp ) for the pressure p”~® (12) in the
same approximation we obtain :

_ B 1-0.054 M it
. P ;st,,T. 12712 140373+ 0.07,%] - a4

Numerical solution (ii)

By substitution of (10) into the equation (2) we obtain:

wuua IW ::g‘ kmmsr m F(x) exp Alanc\:aL dx (15)
0

118

B ——

Fig. 5. Pressure dependence on One-particle vol-

ume (p—V diagram) for various approximations

of non-ideal fully ionized plasma at the tempera-
ture of 10 000 K_

e

fe=n"

3 45 7 1 2 3 4 3 w0
——

where x = r/rp. When the correction function is introduced also into the potential
(8), then

D = P ..ww nkT hs x[F(x) —xF'(x)] sinh m F(x)exp (- x:u\:aL dx .

(16)

Both equations (15, 16) were numerically solved for r,, =T, T€SP. 1p, for two
different forms of the correction function (6a, b). The parameter a, was deter-

'>=n"" _ shift to the ideal plasma).

From the form F(r) it follows clearly that a, should be a physical constant
characterizing the “electrostatic dimension” of the ion. On substituting x = ¢/, :
1 e x p

‘\acnanu\nouwﬂ AmeT NMM&. . 17)

Comparing the pressure obtained numerically from ( 15) with the pressure p® for
low u we determined first the value b, already independent of u.b=1.6and 3.8
for the forms of the correction function (6a), resp. (6b). When the correction
function is also included into the potential, correlation (16), the values of b differ
from the previous ones only a little: 1.8 and 4.0 for the forms (6a) and (6b), resp.
From the equation (17) it follows :

Qo= a .

Q| =t

1
b dmekT
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Fig. 6. Pressure dependence of plasma without
a neutral component on the plasma parameter u
for various temperatures (from 10 to 40 000 K)
calculated according to a semi-empirical formyla
(13) for 7, = Feey 4Fe, 5F... In addition experimen.-
tal points of erosive plasma in capillary (tempera-
ture of experiment 40 000 K) [5] and others are
illustrated.

+--.{5](40 000K )
A 10]
x O-{9)10000K)

The differences between the pressure calculated according to the varioug forms of
F(r) and equations (15, 16), resp., and analytically, vary only with 3 high p. They
are well represented by the analytic semi-emipirical formula ( 13).

According to the experimental data of N. N. Ogurtsova et al. 5], dealing with

formula (13) predicts at r,,, =7, To obtain an approximate consistency with the
results of [5] 7, is to be substituted by 57.,. Thjg indicates that the effective
interaction radius in non-ideal plasma not only remains at the level of the mean

twice ionized atoms (cca 30 % C** and CI**y at the-temperature of 40 000 K.
There are very few experimental data Tesponsibly comparable with the ex-
pressions given, as it js necessary to measure iaovonanuaw notonly n., T, but also
the concentration of the neutral particles n., mainly in high-pressure experiments.
Fig. 6 shows two points from the experiments [1, 7] of the explosion of Cs cord at
high pressure of the inert atmosphere. The illustrated points correspond to the
explosion at 10° and 10° pa of argon, when the ionized atoms still prevail over

plicable, due to either space EroEoma:omQ Or non-isothermicity (T.#T.). After
a subtraction of pressure of the neutral component (the degree of ionization is
lower than 30 %) it shows negative pressures, Conversely, in the €xperiments [14,

15] the pressure is higher than p,,.
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