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ON THE DEBYE TEMPERATURES
OF HEXAGONAL AND TETRAGONAL
CRYSTALS

(Miss) DEBASRI BASU', 1.X.D. VERMA', Calcutta

The elastic Debye temperatures of a number of hexagonal and tetragonal crystals have
been calculated by different approximate methods and the results compared with
computationally exact violues, It is found that the Verma-Aggarwal approximation
(VAA) is simpler, less time-consuming and yields fairly accurate values of the Debye
temperatures.

K BOIIPOCY O AEBAEBCKHMX TEMIIEPATYPAX
TEKCATOHANBHBIX H TETPATOHAJNBHBIX KPHACTAJLIOB

B paGoTe NPHBEACHL PE3YABTATH PATMEHBIK TPHOTIKEHHBIX BLIMUCACHHA YAPYIHX
e6acBCKUX TEMIICPaTyp PARd [eKCATOHANLHBIX H TETPATOHANBHBIX KPHCTAIIOB,
a TaKKe HX CPaBHEHME C TOYHO PACCYMTAHHLIMH 3HAUCHHAMH. QO6HapyXKeHo, YTO
npHONDKEHHE Bepma-Arrapsana sBaseTc HanGonee MPOCThIM, TPeGYCT MeHBINE Ma-
[IMEHONO BPEMEHH M fiaeT [IOBOALHO TOHHRIC anavenus Ne0acBCKHX TeMnepaTyp.

1. INTRODUCTION

In a previous paper {1}, the authors proposed a new method of averaging
isotropic bulk and shear moduli obtained from single crystal elastic coefficients and
calculated the aggregate Debye temperature, Gagg, of a number of orthorhombic
crystals. It was found that the values of the Debye temperatures thus calculated
were much closer to computationally exact values than those calculated by other
methods. The purpose of this paper is to further demonstrate the validity of the
proposed averaging method for other non-cubic crystals, viz., hexagonal and
tetragonal ones.

The Debye characteristic temperature & is related to the average sound velocity
v.. by the well-known relation {2]:

—————

' Gaha Institute of Nuclear Physics, 92, Acharya P. C. Road, CALCUTTA — 700 009, India.

221



r &. —1/3
@IMAW\ Nﬂ<nv Um s AHV

where the symbols used have their usual meanings.
The velocity v,, is given by

=GR @

The calculation of v,. for a material whose elastic properties are anisotropic is quite
laborious and practically impossible without the use of a2 computer. Hence, several
approximate methods have been devised to evaluate equation (2).

There exist at present three different methods of evaluating elastic Debye
temperatures of tetragonal crystals and four for hexagonal ones. These methods are
briefly outlined in the next section for the sake of completeness as they have been
used to calculate the Debye temperatures.

IL. METHODS OF EVALUATING DEBYE TEMPERATURES
IIa. Numerical integration

To obtain the exact value of v, the integrand in equation (2) has to be evaluated.
For a tetragonal crystal, a computer programme was set up to cover the 1/16th of
a sphere bounded by the (100), (110) and (001) directions. The integral was
evaluated using a 5° interval of variable angles ¢ and 8. The limits of integration
for ¢ and & were from 0 to 90° and 0 to 45°, respectively. Reducing the size of the
interval from 5° to 1° did not affect the value of v up to the sixth decimal place.
Hence it is concluded that integration with a 5° interval of variable angles ¢ and 8
with its consequent saving in computer time is sufficiently accurate. The values of v
thus obtained will be designated as V.. and the corresponding @ values as Oerocr-

For crystals having hexagonal symmetry integration turns out to be the simplest
case. Relation (1) can be written, in this case, as [2]:

6= m m a<.v-s m hs AM L Wuv sin ¢ QL-S. 3)
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where vy, v and v, are the three roots of the third-order secular equation for the
sound velocities in a hexagonal crystal and ¢ is the angle between the hexagonal
axis and the propagation direction. The integral can be evaluated by replacing it
with a summation which sums the integral according to Simpson’s rule. The integral
was evaluated using a 1° interval of the variable angle ¢. A further reduction of the
size of this interval did not affect the value of © up to the sixth decimal place.
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1Ib. Wolcott’s tables

This method is applicable only for hexagonal crystals. Wolcott [3] used
a computer to calculate the values of the integral in relation (2) in terms of certain
ratios of elastic stiffness coefficients, c;'s. Using these tables, it is possible to
calculate © of hexagonal crystals. The values of @ thus calculated will be referred
to as O..

IIc. Harmonic series expansion method

In this method, the integrand in relation (2) is expanded in a series of harmonic
polynomials. The value of © in this case is given by [4].
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where o is the density of the crystal and J is a function of ¢;’s.

Betts et al. [4] have derived three different expressions for J for both crystal
systems. These correspond to four, five and six terms in the expansion for
tetragonal crystals and to three, four and five terms in case of hexagonal crystals.
Calculation have been carried out by using all the three expansions and the values
of @ thus obtained are referred to as O eries.

11d. Fedorov’s method

Fedorov [5] has presented a general theory for the propagation of plane elastic
waves in homogeneous crystalline solids. The expression for the Debye tempera-
ture is given by
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where I is a function of ¢,’s. Two approximations have been proposed for I for

hexagonal crystals but only one for tetragonal ones. The Debye temperatures
corresponding to these two approximations have been referred to as O, and Ozr.

Ile. Anderson’s method and VA approximation

This method is based on an artificial conversion of an anisotropic state of
a crystal to an isotropic case [1]. The mean velocity © (relation (2)) is given by

3
|mlu||u+||f (6)
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Here B and G are bulk and shear moduli, respectively. The evaluation of this
Debye temperature, designated as G,g,, has been dealt with in detail in the earlier
paper [1]. The abbreviation AMA, GMA, HMA and VAA stand for the different
averaging schemes for bulk and shecar moduli, viz., the arithmetic mean, the

geometric mean, the harmonic mean and the Verma-Aggarwal approximations,
respectively.

1L RESULTS AND DISCUSSION

The Debye temperatures of a large number of hexagonal and tetragonal crystals
have been calculated by the above mentioned methods and the results are
presented in Tables 1 and 2, respectively. The calculations have been carried out to
a greater number of significant figures than is warranted by the accuracy of the
experimental input data. This has been done to bring out small differences, if any,
between the values calculated by different methods.

The comparison of mean velocities instead of Debye temperatures, in case of
tetragonal crystals (Table 2), has been necesitated by the lack of information about
the values of ¢ and M. This type of comparison has also been adapted in case of
orthorhombic crystals [1] for the same reason.

In both tables, 1 and 2, the crystals have been arranged in the order of an
increasing anisotropy ¢(=(Gv— Gzr)/Gr) [1]. The references for experimental
input data — ¢, and g, used in these calculations are given in the second column of
Table 1 and Table 2, respectively. The elastic compliances, s,’s can be computed
from c;’s Of vice versa, either by a subroutine which inverts any reasonably sized
(nxn) matrix or by using the relations between c;’s and s;’s {311

11a. Hexagonal crystals

The Debye temperatures of thirty hexagonal crystals have been calculated by
different methods and the results compared. The Debye temperatures of Ru, ™I,
Er, Pr, CaMg,, Cd,Mg, Cd;Mg and TiB, are reported here for the first time.

It is seen from Table 1 that the values of @w are in most cases in poor agreement
With @ as compared t0 G i, Ovas 804 Oresorov. Moreover, the evaluation of
©., using the Wolcott tables, involves twelve 7-digit Wolcott table entries if one
uses simple linear interpolation and this number rises to twenty-seven 7-digit
entries for the more accurate De Launay [32] interpolation. Thus, handling the
data as input is unwieldy even for a computer.
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The trend in O, values is Ouc = Os.term = Oierm = G- The relative error,
defined as (O — B,uua)/Ouaer Will, therefore, be the smallest for the 5-term
approximation. Although calculations were made for all the three approximations,
only 4-term and 5-term values are shown in Tabie 1 for this reason. While 5-term
values are, in general, in good agreement with ... and also with Qvaa and

Table 1

Debye temperatures (K) of some hexagonal crystals by different methods

O,.is Oresoror
Material  Ref. (S Gvan 6.0
4-terms  S-terms 1F 2F

Y 6 245.21 24524  245.32 24531 245.32 245.32 245.32
To 7 170.20 170.37 170.39 170.40 170.39 170.39 170.30
Dy 8 177.21 177.32 177.35 177.36 177.35 177.35 177.35
Er 9 186.09 186.18 186.21 186.20 186.21 186.21 186.21
Ho 10 181.45 181.27 181.30 181.30 181.30 181.30 181.30
Hf 6 242.84 24304 24308  243.10  243.07 243.07 243.08
Gd 9 171.06 171.04 171.11 171.12 171.11 171.10 171.11
Ru 6 543.11 543.45  543.65 54376  543.63 543.60 543.66
Mg 6 366.93 366.85 367.02 367.04  367.03 367.01 367.02
CaMg, 6 36330 36355 36375 36379  363.74 363.70  363.76
Be 6 * 1445.13 144521 144568 144528 144527 1445.21
Zn0O 6 41532 41497 41529 41530 41532 41530 41531
Cd,Mg 11 154.06 154.19 154.29 154.33 154.26 154.25 154.30
BeO 12 127725 1277.00 127820 127866 127831 1277.98 127827
Re 6 394.84 39421 394.73 39494 39476 394.60 39477
Zr 6 27448 27411 27457 27469 27457 27442 274.61
Cd,Mg 11 180.21 180.43 180.53 180.70  180.39 180.30 180.53
Nd 13 155.77 155.42 155.62 155.74 155.64 155.57 155.64
Ag,Al 6 265.19  265.20  265.31 265.53 26526 26524 26532
Cds 6 212.89 21254 213.04  213.12 21310 213.00 213.08
Ti 6 396.34 396.05 396.11 396.16  396.09  396.09 396.11
ZnS 12 349.03 348.27 349.13 34945  349.24 348.88 349.22
Pr 14 149.82 149.50 149.74 14995 '149.75 149.62 149.77
CdSe 12 17994 179.40 179.93 180.10 180.00 179.84 180.00
MgZn, 15 308.93 308.15 309.07 309.68  309.22 308.50  309.19
Co 6 452.99 45212 45313  454.11 45322 45265 45324
TiB, 6 970.61 965.02 97390 97222 98198  969.34 97273
Cd 6 192.80 193.78 193.76 195.74 194.69 193.84 193.76
Zn 6 302.78 30639  306.54 30686  312.87 31026  306.46
Ti 6 71.73 7i.60 71.78 72.64 71.78 71.76 71.80

;Qs8=E50.608-856&8Enoxmma:mioﬂoo:Sc_omaoao»osganmmm Ea_‘msmnomnim:a
constants encountered in this case :
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Oretoron, this method has been seldom used to evaluate the Debye temperatures of
hexagonal crystals.

In case of Anderson’s method, it is found that the trend for various G, is
O ann = Ocua = Orva = Ovan = Ouoar- Hence, only GOvaa values are listed in Tab-
le 1; the relative error will be larger for all other averaging schemes. It is seen from
Table 1 that Ovaa values are in good agreement with G..a and also with @,

As seen from Table 1, @, is less than ©;e. The agreement between O, and
©.... is good. The second approximation is, however, not satisfactory especially
when the anisotropy is large. This was also observed in case of cubic elements [33].

The second approximation is, therefore, not worth using, considering the additional

computational labour involved.

An inter-comparison between Gvaa, Os..m and ©,¢ values indicate that for low
anisotropy crystals (say, up to Cd;Mg in Table 1) there is not any appreciable
difference among these values. The difference becomes greater as the anisotropy
increases. In general, ©s.... values are closer to 6... than 6,r. Although the
agreement between BGyaa and B, is NOt as good as that compared between ©;..cm
or B, and ..., the computational labour involved in evaluating Buaa is very
much less. To illustrate, in case of zinc — a highly anisotropic crystal — the relative
errors for Ovaa, Os.m and Oy are 0.13%, 0.03% and 2.09%, respectively. The
calculation of @vaa can be carried out with a slide rule while the evaluation of
Os..m OF O needs a programmable electronic calculator. The VAA is simpler,
less timeconsuming and yields fairly accurate values of the Debye temperature.

IIIb. Tetragonal crystals

The Debye temperatures of twenty seven tetragonal crystals have been calcu-
lated by different methods described in section II and the results compared. The
Debye temperatures of MgF,, RbH,PO,, TeO,, RbH,As0,, KH,AsO., KD,PO,,
CoF,, ZnF,, Ba,Si,TiOs, Hg,Br,, Hg;Cl, and Hg,l, are reported here for the first
time. .

It is seen from Table 2 that there is no definite trend in the series expansion
values viz., vs, Us and ve. In general, the agreement with Ve is rather poor. On the
other hand, in mMOSt CaSeS Vgedorov values are, in general, in good agreement with
V..ae. However, the relative error becomes larger as the anisotropy increases. It has
been observed that in general Uama = Voma=Vuma= Uvaa. Therefore only vema,
Urta and Uvaa values are shown in Table 2. It is also seen that there exist no
appreciable differences between Vreorov aDd Uvaa values for most crystals. Hence,
no definite conclusion can be drawn regarding the superiority of one method over
the other. However, VAA in most cases yields more accurate values of Dgbye
temperatures.
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Table 2

Mean velocity (in 10° m/sec) of some tetragonal crystals by different methods

Useries Vagy
Material Ref. Upodorov  Uexact
4-terms  S-terms  6-terms GMA HMA VAA

Ba,Si;Ti0s 16 3.383 3.379 3.340  3.423 3.422 3403 3.374 3.374
ALCu 17 3.302 3.311 3.277 3361 3.360 3.341 3.346 3.339
BaTiO5-1 6 3.585 3.617 3616 3762 3.756 3.718 3.741 3.716
MgF, 6 4.337 4.334 4352 4.522 4.513 4.464 4.503 4510
ZrSi0, 18 5.209 5.235 5.143 5375 5.362 5302 5.410 5.280
TiO. 6 5.406 5.401 5479 5713 5.694 5.624 5765 5.717
BaTiOs-1 6 3.183 3.209 3.202  3.359 3.348 3.305 3.292 3.280
Zr,Ni 19 1.816 1.825 1.800 1.861 1.855 1.832 1.827 1.832
ZnF, 20 2.978 2976 2997 3.152 3.140 3.100 3.144 3.145
NiSO. . 6 H,O 6 2.449 2.449 2456 2.557 2.547 2.514 2593 2.585
Sa 6 1.651 1.651 1.695 1.757 1.749 1.725 1.808 1.791
KH,AsO, 2 2252 2.257 2.252 2.423 2.412 2380 2.356 2.338
NiF, 22 3.205 3.203 3244 3442 3421 3374 3.457 3.446
NHH,PO, 6 2.569 2.568 2.554 2767 2.750 2712 2.597 2.633
MnF, 23 2.922 2919 2966 3.167 3.144 3.100 3.180 3.164
CoF, 24 3.000 2.997 3.026 3.241 3218 3.173 3209 3.206
KD,PO, 25 2.579 2.590 2.567 2790 2.770 2.732 2.741 2.681
KH,PO, 21 2.599 2.609 2.589 2.823 2.802 2.763 2.752 2.704
InBi 26 1.125 1.155 1.169 1.261 1.251 1.233 1.289 1.240
In 27 0.799 0.815 0.832 0.919 0.909 0.897 0922 0.908
RbH,AsO, 28 1.934 1.946 1918 2.127 2.101 2.075 2075 2.007
NH,H,AsO, 6 2.151 2.152 2.134 2401 2.369 2.341 2.153 2210
RbH.PO, 6 2.078 2.109 2.044 2293 2.256 2.233 2.338 2.202
Hg,Ci, 29 0.735 0.735 0.875 1.017 0.940 1.001 1.176 1.052
TeO, 6 1.314 1.314 1.614 1.882 1.717 1.867 2273 2.053
Hg,Br, 30 0.606 0.606 0.755 0912 0.812 0916 1.100 0.947
Hg.l, 30 0.544 0.544 0.671 0.848 0.737 0.862 1.016 0.841

IV. CONCLUSIONS

The Debye temperatures of a number of hexagonal and tetragonal crystals have
been calculated by different approximate methods and their relative superiority
compared. It has been found for both systems of crystals that the Verma-Aggarwal
approximation (VVA) is far superior to the arithmetic mean approximation
(AMA), which is being used extensively at present for computing Debye tem-
peratures. In case of hexagonal crystals it has been observed that Wolcott’s tables
are not only unwidely to use but also do not yield as accurate values as the 5-term
series expansion method (which is comparatively less time-consuming) or
Fedorov’s first approximation. For tetragonal crystals, no appreciable difference
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has been found between vvaa and Vgesorow DUt VAA is simpler and less time-cons-
uming. It is, therefore, concluded that for a quick and fairly accurate evaluation of
Debye temperatures of hexagonal and tetragonal crystals, VAA can be used with
advantage. It may be mentioned here that VAA has already been found superior to
other methods in case of orthorhombic crystals [1].
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