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NEW ASPECT OF CALCULATIONS OF
THE ELECTRONIC STRUCTURE OF MAGNETIC
MATERIALS'

pP. NOVAK®, Praha

Recent developments in the calculation of the electronic structure of solids, with
special respect to magnetic materials, are reviewed. The spin density functional method is
explained and the results based on this method are compared with the Hartree-Fock
calculations. Various computational schemes are mentioned and on representative
examples the usefulness of these methods for our understanding of magnetic properties is
demonstrated.

HEKOTOPLIE HOBBIE ACHEKXTH BbIYUCIEHHA IIEXTPOHHOU
CTPYKTYPHI MATHHTHBIX MATEPHUAJIOB

@

B paGoTe BPHBORUTCH 0630p COBPEMEHHOTO COCTOAHUS BLIYACTEHMIT SNEKTPOHHON
CTPYKTYpPbi TBEPABIX TEN, NPHIEM 0cOB0E BHHMAHKME YIENSCTCR MATHUTHBIM MaTepua-
nam. OEBACHAETCA METON (PYHKLMOHANA CHHHOBOM TINOTHOCTH, @ PE3YIbTATHI, noay4eH-
JibiC Ha OCHOBE 3TOTO METONA, CPABHHBAKOTCH € BLIYHCICHUAMY 110 METORY Xaptpudoka.
TIpuBeneHbl TAKKE Pa3HbIC CKEMbL BLIYACTCHMI M HA XapaKTCPHBIX NPUMEPAX npone-
MOHCTPHpOBAH2 NONE3HOCTH ITUX METOXOB JUIf HALIETO NOHHMAHHUA MATHATHLIK cBOWCTB
MaTEpHaNos.

1. INTRODUCTION

During the past few years a qualitative change in the calculation of the electronic
structure of solids has occurred. Both the advanced computing technique and the
new physical concept discussed below allow now 2 relatively reliable determination
of the electronic structure of real substances from the first principles (i.e., only the
mmoBQQ of the system and the atomic numbers of the participating atoms are
given as input data). Such calculations yield beside the distribution of electrons
various other physical quantities as the binding energies, equilibrium geometry,
elastic properties, etc.
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Beginning approximately five years ago, similar procedures were also applied
to calculate the magnetic properties of solids. To realize how subtle this problem is,
let us consider the case of nickel. The total energy of an Ni atom is ~ 1500 a.u.; the
exchange energy which controls the magnetism of metallic nickel is only a tiny
franction of it (~0.01 a.u.). Yet to calculate the exchange we have to substract the
total energies of systems differing in spin 1], i.e., quantities which are many orders
of magnitude larger. The virtue of the local spin density functional method on
which the bulk of the results is based does not lie, however, in the precise
evaluation of the total energy, it rather gives a good description of the changes
which occur in the valence states of the electrons when the solid is formed.

1. LOCAL SPIN DENSITY FUNCTIONAL METHOD

The principal problem of any electron structure calculation is to find an
Amnvﬂox._am%ov solution of the Schrodinger equation for the system of interacting
electrons placed in an external field. The corresponding hamiltonian consists of the
kinetic energy of electrons, the interaction V., of electrons with the external field
and the interelectron Coulomb repulsion V.. It is the last term which makes the
problem difficult to solve : for the following discussion we rewrite it as a sum of
interaction of a given electron with the charge density ¢ produced by the whole
electron system and the s.c. exchange-correlation term V.., the form of which will
be specified later «
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In the Hartree method Vi is simply the selfinteraction of the k-th electron taken
with the minus sign (the electron does not interact with itself). The many-electron
problem is then reduced to the single-electron one. The Schrodinger equation for
the one-electron functions being
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(HF) formulation differs from the Hartree method by respecting the Pauli

exclusion principle. It leads to the same equation, only the exchange-correlation

potential is more complicated
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Though the reduction of the many-electron problem to the single-electron one
makes the solution feasible for small systems, the calculation of the electron
structure of solids is still formidable. The approximation to the HF procedure
called commonly the Xa method was, therefore, developed (see (1] for details). In
this method V& is approximated by

u —\u . .
V.(Xa)= - 3a Aww v , 5
where the parameter a, 2/3sa<1 is fixed for each atom by a supplementary
condition (usually that HF atomic energy is equal to the Xa one).

It must be emphasized that in the HF method the electrons are not correlated
and costly perturbation procedure (configuration interaction) are employed to take
the correlation into account. :

In mid-sixties Hohenberg, Kohn and Sham [2—3] suggested an entirely new
approach to the calculation of the electron structure. They noted that for the
ground state of the many-electron system (with a fixed number of electrons) all the
physical quantities, in particular the total energy, may be expressed as functionals
of the electron density. Moreover, the true density is such that it minimizes the total
energy of the system. Variation of the density so that the energy {consisting of

kinetic, potential and exchange-correlation nmnmvcoooaom Ei._am_._owamﬁo%o
equation ‘ :

ﬁquf <a.+% _wmaw._ ar' + <@ Vi = e, &)

where V.. =dE,./dp is the functional derivative of the exchange-correlation part of
energy with respect to the density. In (5) ¢ is connected with 1 by

o= Vi (6)

The equation (5) is formally the same as (2) but we note that no approximation has
been made up to this point. To make the moroncoamLhoglmsmE scheme useful,
the form of Vi (and consequently E,..)must be specified. The usual way is to relate
E,. to the exchange-correlation energy of the homogeneous (but interacting)
electron gas neutralized by a homogeneous positive background, which system may
be solved with sufficient accuracy. Interpolation formulae are available for so
determined V.. ; e.g., according to Hedin and Lundquist {4]

V= —3B(r.) TWW @Sw @)
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B(r,) uw. (1 +0.0316r, In (1+243/r.)]

A\ —-1/3
with r, = T,. ﬁ& ;

The aproximation called the local spin density functional (LSD) method assumes
that V.. determined in this way is valid also in inhomogeneous systems. Comparing
(5—7) with (2) and (4) we see that LSD equations are identical with the Xa ones
only in the LSD method, the parameter & is substituted by the quantity f
depending on the density which, however, causes almost no difference in computa-
tional procedures. We see, therefore, that the LSD method is much simpler
compared to HF and yet it takes into account the correlation between electrons.
The price we have to pay for it may be summarized as follows: ,

(i) No simple connection between &, ¥i in (5) and the one-electron energies and
wave functions exists. The question as 0 which extent g and vy, may be used to
represent the single electron quantities is still under discussion.

(i) As a consequence of the previous point the total energy is not simply the
sum of & but it is given by the expression

N : t
£= 3 et tvan g @] Ve [ e

i=1

(iti) The LSD method applies only to the ground state (but excited states with
a symmetry different from the ground state may be treated similarly).

without difficulty the LSD method may be generalized for magnetic problems by
introducing Vi potentials depending on the spin of electrons (see €.g. 5D.

From the above discussion it follows that the LSD method treats the correlation
properly, while neglecting the inhomogeneity of the electron system. For HF
calculations the situation is just reverse and it is thus desirable to compare resuits
obtained by these methods. Particularly suitable subjects for such comparison are
atoms for which sufficiently reliable experimental results are available and the
calculations are not obscured by additional approximations we have to make in
more extended systems. In Fig. 1 the accuracy with which HF, Xa, and LSD
methods fit the experimentally observed ionization energies of light atoms is
shown. The corresponding relative root-mean-square deviations are 2.4 % (LSD),
54 % (HF) and 6.5 % {(Xa), thus documenting the convencience of the LSD
method. .

A very interesting comparison of the three methods, when calculating the atomiC
multiplet structure, has recently been made by Wood [7]. Also in this case the LSD
gives the best results (see Fig. 2 for an example), though, in order to calculate the
multiplet structure, the functions Yx appearing in (5) are treated as genuiné

electron orbitals. .
A demanding test of atomic calculations is the determination of the Ferm!
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Fig. 1. Quantity y ={E&ik. —~ E /B2, for light atoms (after {6]). Experimental ionization potentials
were corrected for the multiplet splitting.

contact term yx, which is proportional to the difference between spin up and spin
down electron densities at the nucleus. For the alkali metal atoms, where the
dominant contribution to x gives the unpaired s-electron, all the three methods
give a fair agreement with experiment. On the other hand, none of these methods is
capable to explain x in atoms, where it arises due to the polarization of s-electrons
by the unpaired electrons in p or d shells [8].

1I. COMPUTATIONAL PROCEDURES

A common feature of the computational methods based on LSD is that they are
selfconsistent, i.e., starting with the guessed functions ¥« the density (6) is
calculated and with the potential (7) the equation (5) is solved. As a result new
functions ¥, are obtained and the whole procedure is repeated until two subse-
quent iterations give identical results. Most of the methods may be equally well
applied to ionic, covalent and metallic substances and, moreover, modifications for
finite systems (clusters, molecules) as well as for infinite crystals exist.

The methods may be divided into those using and those which do not employ the
muffin-tin potentials. The muffin-tin approximation (i.e. around each atom the
potential is assumed to have a spherical symmetry inside the muffin-tin sphere and
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it is approximated by a constant inbetween the spheres) greatly facilitates the
computation. To the most efficient procedure there belong the augmented-spheri-
cal-wave (ASW) [9] and the linear augmented plane wave (LAPW) [10] methods.
For clusters the multiple scattering cluster (MSC) method (see [1] for detailed
discussion) and a version of the LMTO program (linear combination of the
muffin-tin orbitals) [11] are available. The drawback of the muffin-tin methods is
that a somewhat deliberate choice of the radii of muffin-tin spheres must be made,
also the asssumption of the spherical symmetry of the potential may not be justified
in systems with a symmetry far from the spherical one (planar complexes, surfaces,
etc.).
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Fig. 2. Multiplet structures of Pand P* [7].

The procedures not using the muffin-tin are direct descendants of the linear
combination of the atomic orbital method. In the discrete variational (DV) method
[12] a grid of sampling points is chosen in which the Schrodinger equation is
integrated numerically. In the Gaussian type orbitals method [13] the Gaussian
functions ceritred on individual atoms are employed as the LCAO basis set. When
the exchange-correlation potential and the density are also expanded in terms of

" Gaussian functions, all the matrix elements may be calculated analytically. Both the
DV and the GTO methods may be used to calculate the electronic structure of
molecules, clusters as well as the band structures of crystals.
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IV. RESULTS

Insulators

A number of calculations of the electron structure of transition metal complexes
now exists. The clusters containing 3d ions (e. g. [14]) as well as those with the RE
[15] and actinides [16] were studied mostly using the MSC or the DV methods. The
calculations yield the distribution of the magnetic moment (e.g. in [17] the spin
density in YIG which accounted well for the experimental results was determined)
and a good insight into the nature of the chemical bonding is gained. However, so
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Fig. 3. Magnetic moments of the 3d tramsition
metals [18—19]. u of y-Mn was calculated at the :
experimental lattice constant, for chromium the 0 1 L L L
spin density wave was not taken into account. Cr Mn Fe Co Ni

far nobody has attempted the calculation of the multiplet structure and also-the
direct comparison of the LSD energies £ (eq. (5)) with axcmﬂ::n:ﬁ.: XPS spectra
is somewhat dubious due to the unclear connection between & and the single
electron energies (§ 2). Often the Xa potential has been used (the difference

between Xo and LSD potentials being smaller compared to other approximations
made).

Metels

LSD methods were successfully applied to study the magnetism of pure metals.
Moruzzi et al. [18] calculated by a modified KKR method the properties of
ferromagnetic Fe, Ni, and Co, recently Kiibler [19] has used the ASW method to
study antiferromagnetic chromium and y-manganese. Calculated magnetic mo-
ments u (Fig. 3) agree very well with experiment and also the pressure derivatives
are at least qualitatively explained. The electronic structure of ferromagnetic Ni
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was also determined using the GTC method [20]. It was shown that the LSD
potential gives better results here compared with the Xa result.

Surface and impurities

A study of surface states, surface magnetization and the electron polarization of
Ni (001) using the DV method has recently been reported by Wang and Freeman
[21]. In particular no dead layer was found (the surface layer had 40 % of the bulk i
magnetic moment), nine layers were adequate to get the bulk behaviour inside the
metal and the calculation indicated a Friedel-type oscillation of the magnetic
moment as a function of the distance from the surface.

The formation of the magnetic moment on the impurities in metals is one of the
most interesting problems to solve in the theory of magnetism. Using the LSD
formalism Ellis et al. {22] developed a model for Fe, Co and Ni impurities in
p'-NiAland Zelleretal.[23] studied impurities in the noble metals Cu and Ag.
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