SPIN GLASSES WITH SHORT-RANGE INTERACTION IN THE BPW APPROXIMATION'

СПИНОВЫЕ СТЕКЛА С БЛИЗКОДЕЙСТВУЮЩИМ ВЗАИМОДЕЙСТВИЕМ В ПРИБЛИЖЕНИИ БЕТЕ-ПАЙЕРЯСА-ВЕЙСА

V. ILKOVIČ*, Košice

The static properties of the system of spins interacting via a special short-range interaction within the Bethe-Peierls-Weiss (BPW) approximation are discussed. The positive sign is discussed of the slope of the temperature dependence of the susceptibility below freezing temperature T_f .

Following the results of the papers [1, 2] the equation for the determination of the molecular magnetic field λ_1 has the form

$$\frac{\partial^{2} F}{\partial \lambda_{0}^{2}} \bigg|_{\lambda_{0}=0} = \frac{1}{z^{2}} \frac{\partial^{2} F}{\partial \lambda_{1}^{2}} \bigg|_{\lambda_{0}=0},$$

 Ξ

where F is the average value of the free energy,

$$F = -kT \left(\ln Z_{\text{BPW}} \right)$$

 $(...)_J$ denotes an averaging over the distribution P(J) of the effective coupling

$$\tilde{J} = \frac{1}{z} \sum_{i=1}^{n} J_{0i},$$

 λ_0 is the external magnetic field, Z_{nrw} is the partition function determined by Brown and Luttinger [1] for the classical-spin approximation and for a large z. By using the explicit form of F from (1) we obtain the spin glass freezing temperature T_f in the form

$$kT_f = \frac{1}{3} \left(\frac{\langle \hat{\mathcal{J}}^2 \rangle_f}{1 - \frac{1}{z}} \right)^{1/2}.$$

(2)

The suspectibility λ is derived from the free energy F via

$$\chi = \frac{(g\mu_B)^2}{3kT}(1-q),$$

$$1 \left(\frac{7k}{2}\right)^2$$

(3)

where

$$q = \frac{1}{3} \left(\frac{z \lambda_1}{3kT} \right)^2 \langle \bar{J}^2 \rangle_J$$

Contribution presented at the 6th Conference on Magnetism in Košice, September 2-5, 1980.

^{*} Katedra teoretickej fyziky a geofyziky, Prírodovedecká fakulta UPJŠ, Komenského park 14, CS-041 54 KOSICE.

is the Edwards-Anderson spin glass order parameter, which we can write by using the equation for λ_1 and Eq. (2) in the form

$$g = b\left(1 - \frac{T}{T_i}\right), \ b = \frac{2\left(1 - \frac{1}{z}\right)}{\left(1 - \frac{1}{z}\right)\frac{(J^4)_J}{(J)_J^2} - 1}.$$
 (4)

temperature. For that we obtain The slope of the susceptibility $\chi(T)$ is determined by the variation of the spin-glass parameter q with

$$\frac{3kT_{l}^{2}}{(g\mu_{B})^{2}}\frac{d\chi}{dT} = \begin{cases} -1 & \text{for } T \to T_{l}^{*} \\ -1+b & \text{for } T \to T_{l}^{*} \end{cases}$$
 (5)

One obtains a cups in the susceptibility if b > 1. For the limit $z \rightarrow \infty$

$$_{e} = \frac{2}{\langle \hat{J}^{4} \rangle_{J} / \langle \hat{J}^{2} \rangle_{J}^{2} - 1}.$$
 (6)

special short-range interaction J_{0i} All specific information about spin glasses is contained in the distribution $P(\overline{J})$. We assume the

$$J_{0i} = \begin{cases} \pm J & \text{if } i \text{ is in a volume } v \text{ around the site } 0 \\ 0 & \text{otherwise} \end{cases}$$

a Poisson distribution [3] and the distribution of the effective coupling \tilde{J} with randomly distributed sites in the volume V is

$$P\left(\frac{\bar{J}}{J/z} = k\right) = \frac{(cv)^k}{k!} \exp\left(-cv\right), \qquad c = z/V.$$
(7)

For the distribution (7) we have

$$\langle \vec{J}^2 \rangle_J = \left(\frac{J}{Z}\right)^2 ((cv)^2 + cv)$$
 (8)

$$\langle \bar{J}^{\underline{a}} \rangle_{J} = \left(\frac{J}{z} \right)^{\underline{a}} ((cv)^{\underline{a}} + 6(cv)^{\underline{a}} + 7(cv)^{\underline{a}} + cv). \tag{8a}$$

The condition for the positive slope in the BPW $(z \to \infty)$ approximation below T_i is $1 < \langle J^4 \rangle_j / \langle J^2 \rangle_j^2 < 0$

< 3 and in the molecular field approximation (MFA) $0 < \langle J^4 \rangle_J / \langle J^2 \rangle_J^2 < 3$

 $\chi(T)$ is + 2. In the BPW approximation we have a limit value up to $(cv)_{\mathsf{M}}$ that the Poisson distribution limit value of cv. In principle cv in MFA can proceed to infinity, where $(\tilde{J}^*)_j = (\tilde{J}^2)_j^2$ and the slope of interaction is much larger than the mean distance between the spins. In the MFA we do not obtain this Gaussian distribution. The Poisson distribution changes into a Gaussian one if the range of the interaction to be a more realistic approximation of spin glasses than the MFA. does not satisfy but the Gaussian distribution does. We expect the BPW approximation for a short-range that up to $(cv)_M$ the system with a short-range interaction does not obey the Poisson distribution but the $\langle \tilde{J}' \rangle_J = 5/3 \langle \tilde{J}^2 \rangle_J^2$, the positive slope in BPW approximation has the maximum value +2. This means results in the MFA and the BPW approximation differ more. When $(cv)_{M}$ is a solution of the equation the MFA. For small cv the results in the two approximations differ little. By increasing the cv value the The expression for a slope of the susceptibility in the BPW approximation does not reduce to one in

190

REFERENCES

- Brown, H. A., Luttinger, J. M.: Phys. Rev. 100 (1955), 685.
 Gathak, S. K., Morjani, K.: J. Phys. C9 (1976), 1293.
 Kinzel, W., Fischer, K. H. h.: J. Phys. F7 ((1977), 2163.

Received November 4th, 1980