ELECTRICAL RESISTIVITY OF A DISORDERED Pd—Si ALLOY¹

ЭЛЕКТРИЧЕСКОЕ УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ НЕУПОРЯДОЧЕННОГО СПЛАВА Pd—Si

P. KOPČANSKÝ*, A. ZENTKOVÁ*, Košice

The electrical resistivity of a disordered Pd—Si alloy has been calculated by means of the t-matrix formulation of the Ziman theory. The relationship of the theoretical results to the experimental work on the Pd₈₀Si₂₀ alloy is discussed.

We shal use the approximation of nearly free electrons with scattering described by the t-matrix of a model muffin-tin potential for the calculation of the electrical resistivity of an amorphous Pd—Si alloy. Similarly as in [1] we suppose that only the s-electrons of the transition metal, together with the valence electrons of the metalloid atoms, take part in the electrical conductivity. The electrical resistivity in such a case can be expressed as

$$\varrho = \frac{2\pi\Omega_0}{e^2\hbar v_F^2} \int_0^1 d\left(\frac{q}{2k_F}\right) \frac{q}{2k_F} \left| \langle \mathbf{k}_F' | T | \mathbf{k}_F \rangle \right|^2.$$

 Ξ

The T-matrix for a two-component alloy is given by

$$|\langle k_F^i | T^i | k_F^i \rangle|^2 = c_1 |t_1(E_F, q)|^2 [1 - c_1 + c_1 a_{11}(q)] + c_2 |t_2(E_F, q)|^2 \times$$

$$\times [1 - c_1 + c_2 - (c_1)] + c_2 |t_2(C_F, q)|^2 \times$$

(2)

 $\times [1-c_2+c_2a_{22}(q)]+c_1c_2(t_1t_2^*+t_1^*t_2)[a_{12}(q)-1],$

where c_1 , c_2 are concentrations of the components, Ω_0 is the atomic volume and v_F , E_F are the Fermi velocity and the Fermi energy, respectively. k_F , the free electron wave number, $\frac{1}{8}$ given by $k_F^3 = 3\pi^2 Z/\Omega_0$, where $Z = Z_1c_1 + Z_2c_2$. Z_1 , Z_2 are the effective valences of the alloy and the components. The T-matrix (2) is expressed in terms of the partial structure factors $a_1(q)$, $a_{12}(q)$, $a_{22}(q)$ as well as of the single-site t-matrices. The structure factors depend on the geometrical distribution of the scattering centres, while $t_i(E_F, q)$, (i = 1, 2) describes the scattering of an electron from a state k_F to a state $k_F^2 = k_F + q$ by the following relation

$$\iota_{l}(E_{F},q) = -\frac{2\pi\hbar^{3}}{\Omega_{0}m_{0}\sqrt{2m^{*}E_{F}}}\sum_{l=0}^{\infty} (2l+1)\sin\delta(E_{F})\exp\left[i\delta(E_{F})\right] \times P_{l}(\cos\Theta), \tag{3}$$

where $q = |k_F' - k_F|$, $\delta(\langle E_F \rangle)$ are the phase shifts at the Fermi energy and P_1 are the Legendre

¹ Contribution presented at the 6th Conference on Magnetism in Košice, September 2—5, 1980.

* Katedra teoretickej fyziky a geofyziky, Prirodovedecká fakulta UPJŠ, Komenského park 14, CS-041 54 KOŠICE.

polynomials. The phase shifts $\delta(E_r)$ can be determined by solving the radial Schrödinger equation with the model muffin-tin potential. We have calculated with the potential defined by B. Vasvari as [2]

$$\frac{-2Z_{i}\exp\left[Ar(r-2r_{m})\right]}{r}-V_{\text{AVE}} \text{ for } r < r_{m}$$

for $r > r_m$

4

Effective valence $Z_{rd} = 0$, $Z_{si} = 4$. b) $Z_{rd} = 0.36$, $Z_{si} = 4$. difficult to determine the effective valences of the components, we have calculated two variants: e) Percus-Yevick approximation [3]. The factor $a_{12}(q)$ is taken from diffraction experiments [4]. As it is the multin-tin constant. For the determination of the structure factors $a_{11}(q)$, $a_{22}(q)$ we have used the where Z_i is the charge of the nucleus, A is the adjustable parameter, r_m the muffin-tin radius and $V_{\Lambda VE}$

parameters of the potential for Pd and Si (in at. units) $A_{Pd} = 0.612 \text{ a.u.}$, $r_{mPd} = 2.598 \text{ a.u.}$ $A_{Si} =$ Parameters of the model muffin-tin potential and results for amorphous metallic Pd-Si glasses. The $0.576 \text{ a.u.}, r_{msi} = 2.304 \text{ a.u.}$

0.15 0.17 0.20 0.23 0.25	CSI
0.60 0.68 0.80 0.92 1.00	Z(a)
0.25 0.30 0.47 0.88 1.00	φ (a) [μΩm]
0.906 0.978 1.098 1.197 1.27	Z ^(b)
0.37 0.49 11.10 11.28 1.48	$\varrho_{max}^{(b)}$ [$\mu\Omega m$]
0.71	θω,

experimental values are in good agreement with the theoretical results. It means that the second variant experimental data [5] are summarized in Table 1. We can see that in the case of the second variant the is a more realistic model for the Pd-Si alloy. The parameters used in the calculation, as well as the obtained theoretical results together with the

REFERENCES

- [1] Vasvari, B.: Electrical resistivity of amorphous transition metals and their alloys. Preprint CRIP

- [2] Vasvari, B.: J. Phys. F. Metal Phys. 7 (1977), 385.
 [3] Ashcroft, N. W., Lekner, J.: Phys. Rev. 145 (1966), 83.
 [4] Butvin, P.: PhD thesis. Inst. of Physics Slov. Acad. Sci. Bratislava 1979.
 [5] Timko, M.: Thesis. Faculty of Sciences, P. J. Šafárik Univ. Košice 1977.

Received November 4th, 1980