THE INFLUENCE OF THE CRYSTAL FIELD ON THE PARAMAGNETIC SUSCEPTIBILITY OF PrCu₂¹

ВЛИЯНИЕ ВНУТРИКРИСТАЛЛИЧЕСКОГО ПОЛЯ НА ПАРАМАГНИТНУЮ ВОСПРИИМИЧНОСТЬ РгСъ

CAJAC", Frague

The energy levels and the eigenfunctions resulting from the splitting of the ³H₄ ground term of Pr³⁺ ions in the orthorhombic crystal field of PrCu₂ have been determined. Using these quantities the paramagnetic susceptibility of PrCu₂ has been calculated. A significant deviation from the Curie–Weiss law in the temperature dependence of paramagnetic susceptibility below 200 K has been found.

Previous investigations on the series of the crystal paramagnetic susceptibility below 200 K.

Previous investigations on the series of the rare-earth copper compounds with the orthorhombic PrCu₂ structure [1—3] have shown large magnetic anisotropy of these materials which is still present in the paramagnetic temperature range. Has him o to et al. [3] have introduced a description of the crystal field in these compounds as the basis for the explanation of the observed anisotropy of their paramagnetic Curie temperatures. The aim of our work has been to calculate the influence of the crystal field in these compounds on their paramagnetic susceptibility for which the deviations from the Curie—Weiss law have been found experimentally.

We have approximated the crystal field Hamiltonian by two main terms

$$H_c = V_2^0(3J_t^2 - J(J+1)) + V_2^2 \frac{1}{2} (J_+^2 + J_-^2),$$

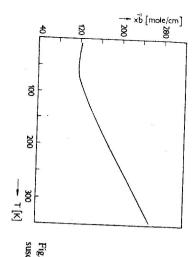
where V_2^0 and V_2^0 are the crystal field parameters and J is the total angular momentum of the rare earth ion in the RCu₂ compound. We have performed calculations for the compound PrCu₂ for which the paramagnetic phase is observed only and its crystal field parameters were determined by the following values $\{3\}$: $V_2^0 = 5.9 \times 10^{-10}$ J/ion, $V_2^0 = 4.1 \times 10^{-21}$ J/ion. Choosing the matrix elements of the considered crystal field Hamiltonian according to $\{4\}$ we have made numerical diagonalization of the crystal field matrix. The ground term of the Pr³⁺ ion is 3H_a . In the given crystal field the minefold degenerated 3H_a term splits into nine singlets. The computed energy levels and the corresponding eigenvectors of the crystal field states are given in Table 1.

The paramagnetic susceptibility per ion has been calculated from the Van Vleck formula

$$\chi_{i}(T) = g^{2} \mu_{B}^{2} \left(\sum_{n} e^{-E_{n}/kT} \right)^{-1} \left(\sum_{n} \frac{|M_{nn}|^{2}}{T} e^{-E_{n}/kT} + 2 \sum_{n \neq n} \frac{|M_{nn}|^{2}}{E_{n}' - E_{n}} e^{-E_{n}'kT} \right). \tag{2}$$

CS-121 16 PRAGUE 2.

¹ Contribution presented at the 6th Conference on Magnetism in Košice, September 2—5, 1980.


* Faculty of Mathematics and Physics of the Charles University, Ke Karlovu 3,

Energy levels and eigenvectors of the 3H_4 ground term in the orthorhombic crystal field of $PrCu_2$ Table 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
$0.024 4\rangle - 0.341 2\rangle + 0.875 1 - 0.341 - 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	140.50
$\frac{1}{2} \frac{1}{2} \frac{1}$	- 148 36
-0.120(3) + 0.607(1) - 0.607(1) = 0.200(-3)	- 146.93
-0.200[3 + 0.678[1) + 0.678[-1] - 0.700[-3]	- 06.91
0.0714 - 0.703 - 2 + 0.703 - 2 - 0.071 - 4	60.01
$0.071(1)$ $0.015(2) \pm 0.404(0) \pm 0.015(-2) - 0.072(-4)$	- 49 39
-0.072[4] + 0.615[2] + 0.082[2]	-19.14
-0.697(3) - 0.120(1) + 0.120(-1) + 0.607(-3)	46.93
$-0.678 3 -0.200 1\rangle -0.200 -1\rangle -0.678 -2\rangle$	16.00
$-703 4\rangle - 0.071 2\rangle + 0.071 -2\rangle + 0.703 -4$	5001
$\frac{200(1)}{100}$	167 30
0 703/4/ + 0 075/5/ 0 005/5	167.51
eigenvectors	(×10 " J/ion)
	energy

temperature, respectively. The matrix elements $M_{m'}$ are defined as $M_{m'} = \langle n/J_i/n' \rangle$, where J_i is the component of the total angular momentum in the *i*-direction of the applied magnetic field and $|n\rangle$ denote the different crystal field eigenstates with energies E_n . Here g is the Landé factor, μ_{θ} is the Bohr magneton and k and T denote the Boltzmann constant and

quantitative comparison it would be necessary to measure the paramagnetic susceptibility of PrCu₂ in behaviour of $\chi_b^{-1}(T)$ for $PrCu_2$ begins below 200 K and is most remarkable below 100 K. For $b - axis \chi_b^{-1}(T)$ for PrCu₂ is given in Fig. 1. It has been found that the deviation from the linear the full temperature range mentioned above. The calculated temperature dependence of the inverse susceptibility along the principal crystalline

susceptibility along the crystalline b-axis of the Fig. 1. Temperature dependence of the inverse PrCu₂ compound.

REFERENCES

- [1] Sherwood, R. C., Williams, H. J., Wernick, H. J.: J. Appl. Phys. 35 (1964), 1049.
 [2] Ott, H. R., Andres, K., Wang, P. S., Wong, Y. H., Lüthi, B.: in Crystal Field Effects in Metals
- and Alloys (Ed. A. Furrer) Plenum Press, New York, London 1977.
- [3] Hashimoto, Y., Fujii, H., Fujiwara, H., Okamoto, T.: J. Phys. Soc. Jap. 47 (1979), 67.
 [4] Hutchings, M. T.: Solid State Physics 16 (1964), 227.

Received October 13th, 1980