ON THE EFFECT OF WEAK FIELDS ON THE MAGNETIC PROPERTIES OF U₃As₄¹

О ВЛИЯНИИ СЛАБЫХ ПОЛЕЙ НА МАГНИТНЫЕ СВОЙСТВА U_зAs,

M. ZELENÝ*, Prague

Field and anglular dependences of transitions between states with defferent numbers of magnetic phases are studied in the case of a sample of a cubic ferromagnet with directions of easy magnetization $\langle 111 \rangle$.

Boundaries between states with different numbers of magnetic phases in a ferromagnet with easy directions (100) have already been studied in [1]. The present paper is devoted to the investigation of transitions which take place in a spherical sample U_3As_4 magnetized at 78 K in low fields oriented between the [001] and [111] directions in the (110) plane. The states with 1, 4 and 8 magnetic phases can exist in this case in dependence on the value and orientation of the field [2]. The formula H_i = NM × $(\sqrt{3})$ and $(\sqrt{3})$ are $(\sqrt{3})$ are $(\sqrt{3})$ and $(\sqrt{3})$ and $(\sqrt{3})$ are $(\sqrt{3})$ and $(\sqrt{3})$ and $(\sqrt{3})$ are $(\sqrt{3})$ and $(\sqrt{3})$ are $(\sqrt{3})$ and $(\sqrt{3})$ and $(\sqrt{3})$ are $(\sqrt{3})$ and $(\sqrt{3})$ are $(\sqrt{3})$ and $(\sqrt{3})$ ar

= NM, $\times (\sqrt{3} \cos \theta)^{-1}$ can be derived from the Néel geometric model [3] for the boundary between states with 8 and 4 phases. H_i is the value of the magnetic field, θ is the angle between H and [001], N

Fig. 1. Boundaries between states with different numbers of the magnetic phase in U₃As, in dependence on the value and orientation of the field. H lies between the [001] and [111] directions in the (110) plane. a, b and c — ranges of states with 1, 4 and 8 magnetic phases, respectively.

^{&#}x27;Contribution presented at the 6th Conference on Magnetism in Košice, September 2—5, 1980. *Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CS-121 16 PRAGUE.

is the demagnetizing factor of the sample and M_s is the spontaneous magnetization. The dependence $H_{ii}(\vartheta)$ calculated for U₃As, is in Fig. 1.

available results of suitable measurements in the (111) directions for US [5] show that this material the field 0.14 T which is near the theoretical value. (cubic ferromagnet with K_1 and M_2 comparable with U_3As_4) exhibits at 78 K the considered transiton in directions of easy magnetization. It provides the expression for H_2 (54.7) mentioned above. The only also be derived from the Néel geometric model that the relation $H_{i1} = H_{i2}$ must take place for the (anisotropy energy $E_a = K_1 (\sin^4 \varphi/4 + \sin^2 \varphi \times \cos^2 \varphi)$), φ is the angle between M_s and [001]. It can condition of magnetic energy of a sample with 1 phase: $E = -HM_a \cos(\phi - \theta) + E_a + \frac{1}{2}NM_a^2$ The points depict the boundary $H_a(\theta)$ between states with 1 and 4 phases. The points were obtained from torque measurements on U_3As_4 in low fields [4]. The expressions $H_a(0^\circ) = NM_4 + H_4$ and H_a $(54.7^{\circ}) = NM_s$, can only be calculated explicitly. The relation $H_a = -2K_1/M_s$ follows from the extreme

REFERENCES

- Sievert, J. D., Voigt, C.: Phys. Stat. Sol. (a) 37 (1976), 205.
 Birss, R. R., Hegarty, B. C.: Brit. J. Appl. Phys. 17 (1976), 1241.
 Néel, L.: Journ de phys. et rad. 5 (1944), 241.
- [4] Zelený, M.: Czech. J. Phys. B (in print)
 [5] Tillwick, D. L., du Plessis, P. de V.: JMMM 5 (1977), 106.

Received October 28th, 1980