INFLUENCE OF COBALT SUBSTITUTIONS ON THE DOMAIN STRUCTURE OF (100) AND (111) YIG FILMS¹

J. ŠIMŠOVÁ*, S. KRUPIČKA*, M. MARYŠKO*, I. TOMÁŠ*, Prague

Films of $Y_3Fe_{5-x-y}Co_xGe_yO_{12}$ ($x=0\div0.1$, $y=0\div0.14$) prepared by the LPE method possess a strong dependence of the magnetocrystalline anisotropy constant K_1 on the Co²⁺ content. Due to the fact that the total anisotropy field perpendicular to the film plane $H_A=2K_a/M_I$, determined by FMR, is small for these materials ($q=H_A/4\pi M_I < <1$) both the influence of magnetocrystalline anisotropy and the stress induced anisotropy will play a significant role in the domain structure. In particular bubble domains were observed on (100) films with $K_1>0$ and with the tensile stress ($\sigma>0$), while for the (111) plane this was the case if $K_1<0$ only.

ВЛИЯНИЕ ДОБАВОК КОБАЛТА НА ДОМЕННУЮ СТРУКТУРУ (100) И (111) ПЛЕНОК ИЖГ

На пленках типа Y_3 Fе_{3-x-y}Co_xGe_yO₁₂ ($x=0\div0,1$; $y=0\div0,14$),полученных методом ЭЖФ, обнаружена выразительная зависимость константы магнитной кристаллической анизотропии от концентрации ионов Co³⁺. С учетом факта, что определенное методом ФМР анизотропное поле, перпендикулярное к плоскости пленки, очень мало, на доменную структуру влияет, кроме наведенной анизотропии, связанной с напряжением, также магнитная кристаллографическая анизотропиа. Цилиндрические домены наблюдались на пленках (100) при $K_1>0$ и растягивающем напряжении $\sigma>0$, тогда как на пленках (111) только при $K_1<0$.

I. INDIRODUCTION

In the previous paper [1] the influence of the stress induced anisotropy and the magnetocrystalline anisotropy on a domain structure was studied for two Co^{2+} concentrations. It was shown that a special type of domains called rectangular bubbles may exist in the remanent magnetic state if a tensile stress is present. The aim of this paper is to continue the study of the films with $\sigma > 0$ by extending the

Contribution presented at the 6th Conference on Magnetism in Košice, September 2—5, 1980

^{*} Institute of Physics, Czech. Acad. Sci., Na Slovance 2, CS-180 40 PRAGUE 8.

composition range of the (100) films as far as the Co²⁺ content is concerned and also by investigating the influence of Co²⁺ on the domain structure for the (111) films.

II. MEASUREMENTS

The way in which the composition of the films, the lattice mismatch and the magnetic parameters such as $2K_1/M_s$, $2K_2/M_s$, $4\pi M_{sq}$ were determined by using EMA, the double crystal X-ray method and FMR, respectively, are described in more details in [1] and [2]. The results of our measurements including the previous ones are summarized in Table 1.

For the (100) films $2K_1/M_s$ changes its sign with increasing Co^{2+} content; becoming positive it increases the value of the total anisotropy field perpendicular to the film plane $H_{\lambda}^{(100)}$ [4]:

$$H_{\Lambda}^{(100)} = \frac{2K_1}{M_s} - \frac{3\lambda_{100}0}{M_s} + \frac{2K_u^0}{M_s}.$$
 (1)

Table 1

*) see [1]	0.11 5	0.055	0.02	0.015	traces	content	Co ²⁺ -	
Ξ	7	4*)	3*)	2	_			
	970±10 1090±10	0.05° 4*) .510±10 555±10	3*) 220±10 245±10	145±10	- 70 ± 10	$\frac{2K_1}{M_s}$ [79.6 Am]	(10	
	- S		245±10	stripes, 145±10 180±10 r. bubbles (Fig. 2a-d)	<0	H ⁽¹⁰⁰⁾ [79.6 A	(100) plane	
	stripes, r. bubbles	stripes,	stripes, r. bubbles	stripes, r. bubbles (Fig. 2a-d)	irregular stripes	$\frac{2K_1}{M_s}$ Remanent domain $\frac{2K_1}{M_s}$ $H_{\lambda}^{(100)}$ domain $\frac{2K_1}{79.6 \text{ Am}^{-1}}$ structure		
	٥,	4,	3,	_	-	cture		
	1060±20 -520±20-500±20	580±20 -270±15-154±20	235±15 -150±20		-75±15 ≈0±20	$\frac{2K_1}{M_s} \frac{2K_2}{M_s} $ [79.6 Am ⁻¹]	(111) plane	
	500±20	154 ± 20	95±20	t	120 ± 20	Re H(111) d [79.6 Am ⁻¹]	ane	
	hardly any stripes	worse quality of stripes	stripes		stripes, bubbles Fig. 3	Remanent domain n ⁻¹]		

As λ_{100} was found to be large and negative for bulk samples of corresponding compositions (see Fig. 1), the second term in (1) is positive and should substantially increase the positive $H_{\Lambda}^{(100)}$ values (Table 1). These values were calculated using FMR data and the values of lattice mismatch supposing that the growth induced anisotropy field $2K_{\pi}^{0}/M_{\tau}$, may be neglected for the (100) films with $\sigma > 0$ (see [1]).

Fig. 1. Concentration dependence of the magnetostriction constants for $Y_3Fe_{5-x-y}Co_xGe_yO_{12}$ single crystals at T = 295 K according to [3].

The original labyrinth domain structure of our films viewed by the Faraday effect is showh for sample 2 in Fig. 2a. The rectangular bubble domain as shown in Fig. 2d were observed for all (100) films with $K_1>0$ as a remanent structure if the sample was subjected before firstly to an in-plane field (Fig. 2b) and, secondly, to a strong enough perpendicular magnetic field. When increasing the perpendicular field gradually, characteristic changes of the domain structure were observed (Fig. 2c) before reaching the state with rectangular bubbles. A similar type of transient domain structure was reported for Mn^{3+} containing films [5] and interpreted in terms of a transition between the Neel and the Bloch walls due to a strong magnetostriction effect.

For (111) films the growth rates were chosen in such a way as to prepare also the samples with $\sigma \ge 0$. In this case the total anisotropy field perpendicular to the film plane is [4]

$$H_{\Lambda}^{(111)} = -\frac{4}{3} \frac{K_1}{M_s} - \frac{4}{9} \frac{K_2}{M_s} - \frac{3\lambda_{111}\delta}{M_s} + \frac{2K_u^o}{M_s}.$$
 (2)

The values for our films were calculated from FMR data [6] according to the relation:

$$\frac{\omega}{\gamma} - H_{\perp} = H_{A}^{(111)} - 4\pi M_{s} \,. \tag{3}$$

Fig. 2a. Origin domain structure of sample No 2 $[K_1>0, (100) \text{ plane}].$

sample after the influence of the inplane field. Fig. 2b. Remanent domain structure of the same Stripes parallel with the [110] direction.

Fig. 2c. Domain structure in the applied perpendicular field 49000 Am⁻¹ (sample No 2).

Fig. 2d. Rectangular bubble domains after subjec-78800 Am⁻¹. Bubble domain walls are mostly ting sample No 2 to a perpendicular field parallel with the [100] and the [010] directions

(111) plane] after being subjected to a perpendi-Fig. 3. Bubble domains in sample No 1' $\{K_1 < 0\}$ cular field 59700 Am⁻¹

anisotropy for all samples with $K_1 > 0$ will oppose the growth induced anisotropy where only for the sample No 1' a bubble domain structure was detected (Fig. 3). content in agreement with data in Table 1 including the domain observations, field $2K_a^a/M_s$. Thus the resulting $H_A^{(111)}$ will decrease with an increasing Co^{2+} expected to be negative and also the contribution of the magnetocrystalline contribution to $H_A^{(111)}$ of the stress induced anisotropy for a higher Co^{2+} content is Taking into account the dependence of λ_{111} on the Co^{2+} content (see Fig. 1) the

III. CONCLUSIONS

stripes and bubbles is not perpendicular to the film plane but makes an angle of concerned we can only conclude here that the compositions with $K_1>0$ are not about 60 degrees from the normal to the film [7]. As far as (111) film are appropriate for bubble domains. agreement with the values of $H_{\Lambda}^{(100)}$. Due to the fact that the values of this field are very small for all samples $(q = H_A^{(100)}/4\pi M_s < 1)$, the direction of magnetization in Rectangular bubble domains were observed for all (100) films with $K_1 > 0$ in

ACKNOWLEDGEMENT

measurements and to dr. P. Görnert and ing. M. Nevřiva for the film The authors wish to thank to dr. R. Bubáková for the lattice mismatch

REFERENCES

- [1] Tomáš, I., Šimšová, J., Bubáková, R., Maryško, M.: Phys. Stat. Sol. (a) 60 (1980), 000. [2] Šimšová, J., Tomáš, I., Görnert, P., Nevříva, M., Maryško, M.: Phys. Stat. Sol. (a) 53 (1979), 297.
- [3] Hansen, P., Tolksdorf, W., Krishnan, R.: Phys. Rev. B, 16 (1977), 3973.
- [4] Heinz, D. M., Besser, P. J., Owens., J. M., Mee, J. E., Pulliam, G. R.: J. Appl. Phys. 42 (1971), 1243.
- [5] Breed, D. J., Voermans, A. B.: preprint Intermag 1980.
- [6] Maryško, M., Šimšová, J.: Acta Phys. Slov. 31 (1981), 127.[7] Maziewski, A.: to be published.

Received October 12th, 1980