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ON PATH INTEGRALS FOR SOME LAGRANGIANS
WHICH ARE NOT QUADRATIC IN VELOCITIES

V.PAZMA,* Bratislava

Some speculations on the path integral formulation of quantum mechanics for some
lagrangians which are not quadratic in velocities are presented.

Ob MHTETPAJIAX MO TPAEKTOPUAM IS HEKOTOPBIX JATPAHXMAHOB
C HEKBAIPATHYHON 3ABUCHMOCTBI0 OT CKOPOCTEN

B pa6oTe npuBefeHb! HEKOTOpbie COOOpaxeHus 0 GOPMYAHPOBKE KBAHTOBOH Mexa-
HHUKH B PAMKAX WHTETPAJIOB N0 TPAEKTOPUAM I JIATPAHKMAHOB, KOTOPbIE HE 3aBUCAT
KBapaTHYHO OT CKOPOCTEH.

L. INTRODUCTION

The probability amplitude K(q, ¢; qo, lo) of the transition of the system from
(g0, to) to (g, £ >1,) is one of the basic notions of Feynman’s approach in quantum
mechanics. In accordance with [1, 2] this amplitude can be formally written in the
following form
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where ¢(1) =dq/dt and L is the lagrangian of the system under consideration. The
right-hand side of Eq. (1) is intuitively interpreted as the continual integral over all
trajectories q(¢') satisfying q(t)=go, g(t)=q. The naive but very transparent
definition of this integral is the following
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where £ = (¢ —1,)/N, gn=q and B.’s are suitable factors. If L=mg’/2- V(q, 1),
then B, =(2m ihe/m)'* (we consider a onedimensional case only). As to the
determination of B,’s we do not know yet recept how to solve this problem for
lagrangians which are not quadratic in velocities. We think that it is not necessary
to advocate the solution of this problem by means of some ‘“deep physical
motives”. Besides, we believe that from the point of view of the completness of
Feynman’s approach and a wider outlook on the path integral formalism, the
determination of B.’s represents an interesting problem.

In this paper we shall deal with the path integrals for lagrangians of the type
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where (a+1)/a=2k, k=1,2,3,... and m is a constant. Though this class of
lagrangians does not contain the physically interesting case L = —m(1— ¢%)"?, we
think that the presented speculations are a good illustration of the possible solution
of the above mentioned problem.

IL. PATH INTEGRALS

According to Eq. (2) the amplitude
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is approximately equal to the short-time propagator K(q., £+ £ qo, %). Hence the
determination of B, is equivalent to the determination of the short-time propaga-
tor. We shall write for the lagrangians (3)
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A =F(¢g, .~ qo) exp =K(qi, to+ € qo, 1), (5

where we assume that a suitable approximate F can be of the form
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The functions fi(¢) and the parameters 5, N have to be determined by means of
some natural requirements. As to the assumption (6) we shall show that this simple
form of F allows us to obtain the equivalency between Feynman’s and Schradin-
ger’s formulation of quantum mechanics.

Let us now investigate the consequences for fi» B, N following from the above
mentioned equivalency. The wave function of the system can be defined by

Y(q, 1)= [ dq.K(q, t; go, t)1(qo, fo). (7)

The equivalency between Feynman’s and Schrodinger’s approach requires
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where H = (a/a + 1)m ™ "*(—ihd/3q)“"""*. Since we do not know the exact K it is
sufficient to choose F;(£), N and f in such a way as to have
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Let us rearrange the left-hand side of Eq. (9) in the form of the right-hand side. We
have
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where o
~C+F En‘ﬁa afxtmvﬁ EQ+C.

Now we put N=2k =(a+ 1)/a and
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where we put g; = f;(g)g*¢*Prern . .

Mﬁ for a nwnmmw B mro solution to Egs. (11) exists, then f,~ m-ac.:r;sn Y and the
coefficients in (3/3¢g )"y are proportional to £**. Hence, the relation (9) holds.

To illustrate this situation let us consider the case a=1. .= AM look for the
solution to Egs. (11) for N=2 and 8 =0, we obtain fo=(m/27 ihe)' ", fi=f> = o.#m
we put =1, then we have no solution to f; and if § =2, then fo= AE\NN .53
(2m/ihe), fi=0, f,=(m/2x ihe)'? (m*/3h’c*). These results are not surprising. In
the case of B =0 we obtain the exact propagator and for =2 we have a good
approximation (in the sense of Eq. (9)) to the exact propagator. Hence Egs. A.:.v
can have the solution for several values of the parameter 8. In a general case it is
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difficult to decide what value of § is or is not appropriate from a certain point of
view (e.g. the simplicity of the formalism).

1. CONCLUSION

Our speculations indicate that for lagrangians of the type (3) the “measure”
d[q(?)] can be formally written in the form

N-1
dlg(d]=lim F(e, g ~ gn-1) || F(¢, 4=~ Gn-1) dan,

where the function F can be determined from the requirement of the equivalency
between the path integral approach in quantum mechanics and the Schrédinger
one. The determination of F is not unambiguous by means of the procedure
outlined in Sec. II because any shorttime propagator satisfying Eq. (9) is suitable
for the path integral formulation. Our approach misses the proof that for given
a=1/2k—1, k=1, 2, ... there is such f§ for which the solution to Eqgs. (11) exists.

REFERENCES

[1] Feynman, R. P.: Rev. Mod. Phys. 20 (1948), 367.

[2] Feynman, R.P., Hibbs, A. R.: Quantum mechanics and path integrals. Mc-Graw Hill, New York
1965.

Received August 1%, 1980



