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ON THE CONSTRUCTION OF INDEPENDENT
LORENTZ-COVARIANTS FOR REACTIONS WITH
THREE PARTICLES IN THE FINAL STATE

M. GMITRO,* A. A. OVCHINNIKOVA ** Dubna

The problem of the scattering on fermion targets is considered for the reactions a + f
— b+ c+f. New identities which allow us to eliminate all but independent Lorentz
covariants are deduced in the covariant four-component spinor formalism. Two new
techniques, the formalism of relativistic spherical tensor harmonics and an analytic
manipulation computer system have proved indispensable to obtain these results.

K BOOPOCY O NMMOCTPOEHMM HE3ABHCHUMOTO HABOPA
JIOPEHIIEBCKMX KOBAPHAHTOB LIS PEAKIMI
C TPEMA YACTHIHAMHM B KOHEYHOM COCTOSHUH

B crathe paccMaTpupaeTcs npoGneMa NOCTPOEHHs NOMHOTO HAGOpa HE3ABHCMMbIX
JIOPEHUEBCKHX KOBAPUAHTOB JUIA AMIUTUTYAbI PacCesiHus peakiuu a +f — b+c+f 8
MPEANONOXKEHHH, YTO MMEETCH ONpefeCHHbI TvN B3auMopeicTeus. IpH penreHuu
3TO# MpoGnemsl BeChbMa NOAXORAUIMM 0Ka3asics (hOPMATHIM PENSITHBIUCTCKHX chepydec-
KUX TEH3OPHbIX rapMOHMK. B paMkax 4eThIpeXKOMIIOHEHTHOTO CIIMHOPHOTO GopManus-
Ma NoJy4eHbl HOBBIC TOXMICCTBA, MO3BOMMIOIIME BLIIENHTL 3aBHCUMBIE KOBAPUAHTDI.
Inst ocyluecTBIEHNS HAMEUCHHON POrpaMMbl ObiNa HCTIONLIOBAHA CHCTEMA AHANKTH-
HECKHUX TipeoOpa3osaHuii Ha DBM.

L. INTRODUCTION

The well-known prescription [1—2] in the M-function technique is to express
the T-matrix as a linear combination of independent Lorentz covariants (ILC)
contracted with the wave functions of external particles. Frequently however, one
knows the type of the interaction involved and using this input information can,
therefore, analyze the structure of the T-matrix in more detail. It then may appear
convenient to consider T as a product of two tensors which are individually
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expanded in terms of ILC and certain invariant functions (“form factors™). For the
binary reaction the construction of ILC should be standard by now. The elimina-
tion of the dependent covariants becomes, however, technically difficult if the
reactions with several final-state particles are considered. To our knowledge it has
not been analysed as yet and, moreover, such amplitude expansions over heavily
overcomplete sets of Lorentz covariants may be traced in very recent literature.

In this note we address ourselves to the reactions with three particles in the final
state. The traditional construction proceeds in the Cartesian basis. To eliminate the
dependent covariants one indeed wishes to know first the number of ILC which
span the needed set. In Sect. I we formulate a result obtained earlier [3] for the
two-variable tensor spherical harmonics, which allows us to establish the number of
ILC for the tensors considered. Then in Sect. III we apply the well-known i2]
properties of the fully antisymmetric unit LENSOT £, in the four-dimensional space
to obtain several nontrivial coupling equations which allow us to eliminate ail
dependent Cartesian covariants for the case of reactions with spin-1/2 particles.
The formulation though made for a particular reaction contains all ingredients
necessary to analyse the general case of 1+2 — a+b+ ¢ processes. It should be
noted that we do not consider the problem of the so-called kinematical singulari-
ties, which has to be studied independently in any case.

Il. THE NUMBER OF INDEPENDENT COVARIANTS

The construction of multiparticle Cartesian covariants is described, e.g., by
Hearn {4]. He considers the combinations of the so called L -functions and C-bases.
The L-functions are irreducible combinations of the Dirac gamma matrices
{polarization vectors) for the case of fermion (boson) particles. The C-bases are
combinations of the 4-momenta available in the process (tensor bases) and
combinations of the 4-momenta with the antisymmetric tensor €apys (pseudotensor
bases). .

To give an example let us think of the radiative muon capture reaction on proton

1P+ p(pi, T) > y (k) +v(p™) + n(p,, Jr). M

Assuming the effective interaction for the corresponding nonradiative process in
the form current x current, we shall consider the individual pieces of the amplitude
Separately as linear combinations of the appropriate ILC. Then the complete
reaction amplitude (disregarding of the “radiation from the lepton line’’) can be
written in the form

\N,_ﬁuriq ﬁ?vu \Aw Di, ﬁ\‘ .N.,u .\-VH m.t.m.ts@: ﬁ? \.n. .NT. .\\V.N\»@C:q b?.vu ANV

where ¢, is the photon polarization and J, is the leptonic weak charged current. To
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construct the hadronic tensor S.; we have at our disposal the momenta Q, =
(Pr+p)., q. ={(pr— P}, and k,, and similarly as in Ref. [4] we write the tensor
basis

%:5 O_: Gu, \Atu Q:Nv,\AQv b= O« q, \Avu S ﬁwwv

and L-functions:

L Y, YuVas Y5 = V1%2Y37s, Vs, Ys¥uY, (3b)

where y, are the usual Dirac matrices. Using the components (3) and after all usual
simplifications (apply the Dirac equation, ...) we obtain 68 seemingly independent
[5] covariants. Here one has to admit that there is apparently no possibility to
establish the actual number of independent covariants, if the construction is
performed in the Cartesian bases as in Ref. [4].

It is the formalism of two-variable relativistic tensor harmonics in the spherical
or helicity basis, which should be utilized here. Being fully equivalent to the
Cartesian forms applied above it fortunately provides enormous technical simplifi-
cations. As an example of its use we establish here the number of ILC which span
the complete set to be used for expansion of S,;.

It was shown in Ref. [3] that starting with two 4-vectors, e.g. the vectors &, and
q. introduced above, one can construct only 2/ + 1 independent two-variable scalar
spherical harmonics

{b)im}= 3 [l Yt (K) Ya(4), 4)
iy
where Y7, are the usual spherical harmonics and [:::] stands for the
Clebsch—Gordan coefficient, /, + L, = or I + 1. All other harmonics {(/{/;)Im} can
be expressed through the harmonics {4) as their linear combinations with scalar
coefficients. It is then €asy to see [3] that the number of independent tensor
harmonics of an arbitrary order s is

J+r
NP=Sn® M QI+ 1)=>nr+ 127+ 1), (5)
r A= —r| r
where n,” is the statistical weight of the corresponding basis tensor e,, ¢, ... e,
connected with the vector Q, and J is the total angular momentum of the
harmonics. In the case of 2nd order (s =2) spherical tensor harmonics we have [3]

ne’=2, n®=3 and n®= 1, therefore

NP =16(20 + 1), (6)

I={5 -7 1) - JI+1, . L +J. In particular, for the above example of reaction
(1), where J,=J,=1/2, only Ny’ + N¥"' = 64 independent Lorentz covariants exist.
Four coupling equations needed shall be obtained in the next Section.
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1. COUPLING EQUATIONS

Consider the form

U(au, b.) = vsa,b.£apsVeakap DS,

and its contractions with the appropriate Dirac spinors:
4(pP)Ys85b80BepEasysVakisp P u(p”) = a(p")U(a,, b.)u(p®). Q)
The LHS of (7) may be expanded using mccmg:@iq twice the identity {2]
Eapr00v = Eupy6Opa + EavvsOop + EapvsOoy T+ EapyOes, (8)

which follows from the antisymmetry of £, in the 4-dimensional space. Substitu-
ting finally

Eapivs = Vs(YaYoVrYo — Bas¥yVs — OpyYa¥s — OysYa¥s — OasYsYy + ©))]
4+ Amn.\ﬁmu\m + Qmov\ﬁ\vﬁ\ + @nuﬁwu& + QQ&QQ = Amﬁ\ﬁmuuv

one obtains from (7) the needed form.

The three independent 4-vectors pertinent to the problem are called &,, p¢°, and
py. Any of them can be substituted both for a, and for b, in (7). In this way we
obtain nine expressions which should be inspected individually in order to establish
the possible couplings. All manipulations needed on this trail are completely
straightforward, they become, however, extremely tedious due to the big number
of operations. We doubt that this algebra can efficiently be done manually. To
perform it we have used the algebraic manipulation system SCHOONSCHIP [6]
installed.at the CDC 6500 computer in Dubna.

Out of nine relations obtained from eq. (7) there are only three which display
couplings, namely those constructed with substitutions Al: a=p®, b=k, A2:
a=p?®, b=k, and A3: a=p®, b=p?®. We list them in the Appendix. (Three
substitutions with a and b interchanged give again precisely the relations
(A1)—(A3); the three substitutions left (a=5) lead to the trivial identity 0=0
only). As it should be expected according to (6), the identities (A1), (A2) and (A3)
are dependent. They are connected via

— M(A1) + m(A2) + (mk.p® — Mk.p®)(A3)=0 (10)

with (5 —im)u(p®)=0, ( ~ iM)u(p®)=0, p = yap..

As a result two independent coupling relations, e.g. egs. (A1) and (A2) follow
from the form (7). Other two independent couplings can be derived if we consider
the function

V(a,, b.) = a.b.tapyakspy ps’

instead of Uf(a,, b.).
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V. CONCLUSIONS

We have shown that the sets of Lorentz covariants constructed in the Cartesian
basis for the tensor decomposition of the amplitude of the reactions with three
particles in the final state are overcomplete. Though we think that the existence of
nontrivial identities derived may be of interest by itself, we wish also to stress two
methodological points related with this work. Firstly, it is obvious that the popular
Omnﬁmmms techniques become difficult to use in all cases beyond the simplest binary
reactions and should be supplemented or even substituted by the covariant
techniques which use the relativistic tensor harmonics. Secondly, the algebraic
manipulation system like REDUCE, SCHOONSCHIP, FORMAG, etc. which are
by now available at a number of computation facilities certainly deserve to be much
more widely exploited than it is customary nowadays since they may produce useful

results, which would be beyond reach if we were to stick to the “manual”
derivations.

APPENDIX
&AES\»@A:« m; EQ_Q zvtgavﬂay A>~v
a(p™A PP, M; p®, myu(p)y=0 (A2)

with
Aa, m; b, M)= vy k(m’k-b tk-ab-a)+
%Y i(mk-bk-a—mk’b-a—M(k-a) - Mm’k*) +
+(viku — vk K im(Mm + b -a)+ (vaa, — vk i(Mk-a ~ mk - b)+
+ vk — vk, ) (Mmk-a+ k-ab “a)+ (Vubi — b )k + (k-a)’)+ (via, - )

(Mmk*+ k-bb -a) + k(kib, — kb, ym? +
+ K(k.a ~ kaa, )Mm + K(b.a,— bia,)k-a+
+ KB (—mk b~ k-ab-a)+ (b, — bok,) imk -a +
+(kat — kaa,) IMKk - a + (a,b;, — ab,) imk* +
+ 8,4 RESN»N;.:A».QVN;,S»N?QIiw.u».nv.

a(p ) vy (Mm ~p©p™ + v,y i(mk p"+Mk-p?) + (A3)
(v = D PYE im + (1,0 — vp YK iM +
+ (ks = vk )(Mm —p- p©) + (y,p — . p Mk Y+
+ (0P~ vp Ve p P+ K(pCp - pPp0) 4
+ KO (—M’m’ + (pPp DY) + Pk —pPk,) im +
+(pk = pik,) iM — 8, i(mk "+ Mk PN ulp™ =0
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