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ON THE SHAPE OF THE POWER SPECTRUM
OF THE BARKHAUSEN
NOISE*

ANGELA ZENTKOVA**, ANTON ZENTKO***, Kogice

An expression is derived for the power spectrum of the Barkhausen pulses of different
shape. It is shown that the power spectrum is significantly influenced by the shape of the
elementary Barkausen pulses. .
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INTRODUCTION

It is known that the magnetization process of a ferromagnetic material is
associated, within a large part of the hysteresis loop, with jumps of the Bloch walls
which give rise to the Barkhausen noise. The power spectrum of the Barkhausen
noise has been calculated be several authors as P. Mazzetti [1], G. Montalenti
[2] and Celasco et al. [3]. However, almost all previous studies presupposed that
all Barkhausen pulses are €qual and have a simple exponential shape. The purpose
of the present work is therefore the study of the influence of the shapes of
Barkhausen pulses on the power spectrum.

II. THE CALCULATION OF THE POWER SPECTRUM
CONDUCTING SAMPLES

The power spectrum of the statistically independent Barkhausen pulses can be
written in the form
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where a, is the mean value of the amplitude of elementary pulses, # is the average
number of pulses per unit time and F(w) is the Fourier transform of the elementary
pulse. In the preceding paper [4] we have derived an expression for the time
dependence of the Barkhausen pulse

e()=C(M, y) ¢ exp (—m/4y*r), (2)
where C(M, y)= uM/2y Vi, Y'=1/uo, M is the magnitude of the magnetic
dipole which describes the Barkhausen jump, u is the reversible permeability, o the

electrical conductivity of the sample and m is the distance of the origin of the jump
from the surface of the sample : we can therefore write

D(w) =2na’ \QQS, Y)2x)™" \a Zexp(—alt— iwt) dr ~, 3)

t=1/t. Then

\NLQ%AIQ\NImSC&H\ exp (—ar ~iw/t) dr =
0

0

=Vdiaw/aK, (Vdiaw), 4

where K, is a Mac Donald function of order one. Now we substitute (4) into (3).
Then we obtain

P (@) =nC*M, a)/2|Viias K.\(Vdiaw))>. (5)
We shall now study the behaviour of the function (5). We use the identity
Ki(z)= —a/2(J(iz) +iN,(iz)), (6)

where J,, N, are a Bessel and a Neuman function, respectively. If w — (0, then
Ji(iz)— 0 and Ni(iz)=2/inz. Thus

P(®)0ro=nC*M, a)/7a. (7)

For high frequencies we US€ an approximative expression for the Mac Donald
function

Ki(z2)=Vg/2ze . (8)

When (8) is substituted into (5) we obtain

P(w) =7n,C* (M, a) Vag e V% @
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lIl. THE POWER SPECTRUM IN THE CASE OF NON-CONDUCTING SAMPLES

Roditchev and Ignatchenko [5] derived, using some simplifying assump-
tion, the following expression for the velocity of the domain wall during the
Barkhausen jump i

v(t)=ap(ni/p*—1) e ™" sinh pt, (10)

where a, p, n, are material constants. Because of the lack of the eddy current in the
non-conducting samples the shape of the elementary Barkhausen pulse is given
also by the equation ( 10). Then

Flw)=ap(nip~>- :\. e " sinh pr dr. (11)
0

Since p =Vni—k® and n,>k, we have

Loy 2 -2 =c+_.8|H v
F(w)=a(nip~~1)/4B A o2 (12)
According to the definition of the beta-function
B(x, y)= \ F =0y de (13)
0
we have
1 :=+m5lw
F)=atmip™=1)4 [ ¢ 2 g,
0
S 2p .
_ 2 -2
=a(nap uv\bg. (14)
After substituting we have
@Aev“ ng Q&IENV AH@V

[0*+ (n0— p) N[0+ (no+ p)]-

The voion spectrum  described by equation (16) has in the region of low
?ma:n:nmnm the form

2
anag

eﬁevslvo = N\ﬂu

17)

and is frequency independent. In the region of high frequencies it decreases
proportionally to @ ™. The power spectrum (16), together with the spectrum (5)
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and for comparison also with the power spectrum of the pulses ‘of exponential REFERENCES
shape, is shown in Fig. 1. As can be seen from this figure the behaviour of the
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Fig. 1. The behaviour of the relative spectrum of the Barkhausen noise for different shapes of the

elementary Barkhausen pulses. Curve 1 represents the spectrum, as given by equation (16), curve 2 is

given by equation (5) and curve 3 represents the power spectrum of the pulses of the exponential shape
(e(t) =ae™*). The time constant « is in every case a = 107 sek.

IV. CONCLUSION

We have shown above that the course of the power spectrum of the Barkhausen
noise is significantly influericed by the shape of the elémentary Barkhausen pulses.
This result may be ov considerable importance ib the interpretation of an
experimentaly observed power spectrum of the Barkhausen pulses. Finally we note
that analogical calculations can be made for the case of the correlated Barkhausen
pulses.
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