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TEMPERATURE DEPENDENCE
OF TRANSIENT SELF-FOCUSING
IN THE ISOTROPIC PHASE OF MBBA

JAN PAPANEK*, ANTON STRBA*, Bratislava

We have shown that the temperature behaviour of the transient self-focusing in the
isotropic phase of the nematic liwuid crystal MBBA is primarily determined by the
temperature dependence of the scattering of light. The theoretical description of
self-focusing based on the paraxial solution of the wave equation with the induced
refractive index obtained from de Gennes’ theory of liquid crystals is in good agreement
with the experimental results when scattering is properly taken into account,

TEMIIEPATYPHAA 3ABUCHUMOCTD HECTAITHOHAPHON
CAMO®OKYCHPOBKH B M30TPOITHO¥ ®A3E MEEBA

B cratee nokasaHo, 4TO TEMIIEPATYpHAs  3aBHCHMOCTD HECTaIMOHAPHOM
€amMO(OKYCHPOBKH B H30TPORHON hase HEMATHYCCKOTO XMAKOrO Kpucranna MBBA
B OCHOBHOM OMNPpEfenseTCH TEMIEPATYDHOH 3aBHCHMOCTBIO pACCESHMA  CBETA.
Teopernieckoe onucanue, OCHOBaHHOE Ha H2paKCHAAbHOM NPHGAHINTENLHOM PEIHEHUH
BO/THOBOTO YPAaBHEHUS C HENMHEHHLIM MOKA3aTENEM NpENOMIEHHS, HOJYIEHHbIM [0
TEOPHH XUIKHX KDHCTAINOB fie XKeHa, XOPOMIO COTMACYeTCH ¢ IKCICPUMEHTANBHBIMY
PE3yNLTATAMH, ECTH NIPHHAMACTCS BO BHHMAHHE BIMSHHC PACCEAHMS CBETA,

I. INTRODUCTION

Despite of its having been discovered in 1962 [1], self-focusing of light still
remains one of the most interesting phenomena in nonlinear optics. It is of major
importance in the design of high-power lasers because of its role in light-induced
damages. The self-focusing is of fundamental interest also because of its interplay
with many other nonlinear optical processes.

Recently, it has been demonstrated that nematic liquid crystals in their isot-
ropic-liquid phase exhibit a particularly strong electrical [2] and optical [3] Kerr
effect and have very low threshold powers for self-focusing [4]. One of the most
remarkable features of all these effects is a strong pretransitional behaviour as the
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transition temperature from the isotropic-liquid to the nematic phase is ap-
proached. For example, it was found that the response time of the Kerr effect
exhibits the characteristic critical slowing down [3]. The response times of some
nematic liquid crystals are so large that we can observe transient self-focusing in
these materials, when we use nanosecond pulses of a Q-switched laser. The
transient self-focusing was observed in the isotropic phase of the nematic liquid
crystal p-methoxybenziliden-p-n-butylaniline (MBBA) (5, 6, 7]. At the same time
it was shown that self-focusing in MBBA has a complex temperature dependence
of which no satisfactory explanation was given.

In the present paper we show that the temperature behaviour of self-focusing in
MBBA can be described on the basis of the Landau-de Gennes model of liquid
crystals and the paraxial solution of the nonlinear wave equation when the
scattering of light in the isotropic phase of the liquid crystal is taken into account,
The theoretical predictions are compared with the experimentally observed
temperature dependence of self-focusing in the isotropic phase of MBBA.

Ii. THEORY OF SELF-FOCUSING

Nonlinear optical properties of matter result from the nonlinear dependence of
polarization P(r, ¢) on the electric field strength E(r, ¢) of the light. If we do not
take into account the spatial and temporal dispersion, the polarization can be
represented by a power series expansion in the electric field of the form {8]

wnﬁﬂ» NV”MG&MMMNWnAﬂu NV:TMQXM% uAﬂ. Nvm,‘Aﬂu Nv+ H
+ e SeEa(r, )E,(r, )Es(r, )+ ..., M

where ¢, is the permittivity of free space, x% is a linear susceptibility tensor, y&,
and x$%,s are nonlinear susceptibility tensors of the second and the third order,
respectively. The second order susceptibility tensor vanishes in the isotropic media
due to symmetry conditions.

Eq. (1) enables us to write the susceptibility of the nonlinear isotropic medium in
the form

X(E)=xo+8x(E), ()

where y, is the susceptibility independent of the electric field and Ox(E) is the
change in the susceptibility caused by the electric field of a powerful light wave.

The index of refraction can be written in a similar way as
n(E)=no+én(E), (3

where n, is the linear refractive index and 6n (E) is the induced nonlinear refractive
index.
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Since
on(E)=06x(E)/2n,, 4)
the polarization of the isotropic medium can be written as
P(r, t)=P"(r, t)+ 2e0nsn(E)E(r, t), )

where P*(r, t) is the linear part of the polarization vector.
Self-action of a laser beam can be described as a change of the refractive index of
the medium caused by the strong electric field of the light and a subsequent change
in the propagation of the laser beam. The propagation of the beam is governed by
the wave equation with Eq. (5) instead of the linear polarization
1 3°E(r,t) 2 ¥ énE(r,1)]
- 2 ?

N Pt /Y
VEr D=3 “na? o

(6)

where v, =c/n,.

For a monochromatic light beam propagating along the Z axis and polarized along
the £ axis we can write

E(r, t)=E(r, t) exp [i(wot — kz)]%, 7

where k =n.wo/c and w, is the angular frequency of the incident light. If én <n,
and the amplitude E(r, ?) is a slowly varying function (these limitations on the rate
of the spatial and temporal variations of the amplitude are thoroughly discussed in
[10]), then Eq. (6) can be transformed into the following equation

138 [ 3Ed(r,z, «J oy ﬁmmo?, z,t), 1 3Eq(r, z, &H_ 26n ,, _
e _Hw —ar 2ik 3 o Y + - k’Eo(r,z,t)=0,
(8)

where we have used the cylindrical coordinate system.

In order to solve this equation, we need to know the functional dependence of dn
upon the electric field. The nonlinear refractive index depends on many physical
processes, one of which is usually dominant. Each of these processes is charac-
terized by a response time t, which can vary from seconds for thermal effects to
femtoseconds for electronic processes. The ratio of the laser pulse length to the
response time of the dominant mechanism influences decisively the behaviour of
self-focusing. If the pulse length is much greater than the response time of the
medium, steady-state self-focusing takes place. If, on the other hand, the pulse
length is shorter than the response time, the transient character of the response of
the medium dominates the self-focusing behaviour.

In the isotropic phase of nematic liquid crystals, the dominant mechanism giving
the largest contribution to dn is molecular reorientation, i.e. the optical Kerr effect
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[3]. Though the nematic liquid crystals lose the long-range orientational order at
the transition from the nematic to the isotropic phase, considerable short-range
orientational correlations are preserved. The molecules cannot rotate freely, but
only with a “swarm” of molecules. It is obvious that orientational response times of
such “swarms’ must be substantially longer than those of the individual molecules.
For example, the relaxation time of the optical Kerr effect in MBBA changes with
rising temperature from approximately 800 to 40 nanoseconds.

Il OPTICALLY INDUCED REFRACTIVE INDEX
IN THE ISOTROPIC PHASE OF LIQUID CRYSTALS

Since the magnitude of the induced refractive index depends on the increase of
the orientational order in the isotropic phase of the liquid crystal, we can use the de
Gennes phenomenological model of phase transitions in liquid crystals for its
description [11].. The degree of the orientational order is given in this theory by
a macroscopic tensorial order parameter Q.. Any tensorial property of the
medium might be used for its definition, but for our purposes the most suitable
expression of the order parameter is the one through the susceptibility tensor

31 1
Qup =75 mAxatw Mxﬁm,sv, %)
where Ay is the anisotropy in electric susceptibility for a completely aligned liquid
crystal. If this complete alignment is along the £ axis, we have

1
AX = or =5 oy + 4ee) - (10)

It is obvious from Egs. (9) and (10) that Q. is a symmetric traceless tensor with
Q.. =1 for complete alignment. The equilibrium value of the order parameter in
the isotropic phase is zero. We can re-write Eq. (9) in the form

1 2
Xos =3 2 XrOas +MDNO§. (11)

In the de Gennes model the free energy per unit volume is expanded in the vicinity
of the phase transition in a Landau type power series as [11]
1 1 1

F=Fo+5 A(T)QupQsa +3 B(T) 00 Qy — 5 P.E, (12)
where F, is free energy independent of Q,, P, is the polarization of the medium,
A(T) and B(T) are temperature dependent coefficients. We have neglected in the .
above equation terms of higher powers of Qs and terms describing the spatial
variations of Q,s. For a phase transition to occur it is necessary that the coefficient
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A(T) go through zero. The simplest form of A (T) as obtained from the mean field
theory is given by A(T)=a(T—T%), (13)
where a is a constant and T* is the transition temperature of a fictitious
second-order phase transition. In MBBA T* is 0.7K lower than the phase
transition temperature T, from the nematic to the isotropic phase [12]. The cubic
term in Eq. (12) reflects the symmetry conditions of the phase transition. Due to
these conditions, the phase transition is of the first order but with a very small
latent heat. Since the expansion (12) is applicable for small Q,s only, and also
because of the “weakness” of the transition, we may drop the cubic term in
Eq. (12). ” .

Substituting Eq. (1) for polarization into Eq. (12) and neglecting the terms
coming from the nonlinear part of the polarization (these terms are many orders of
magnitude smaller than the linear term) we obtain

mumiw a(T = T*)Q.s Qe nw e AYE*EsQ.s (14)

In writing Eq. (14) we have used Eq. (11) for x.s and we have included all the

terms independent of Q,, into F,. The steady state value of Q. induced by the

optical field can then be obtained by the minimization of F with respect to Q,; and
is given by

£0AY

AO&VHQHIIEAm“muIW_mg&v. (15)

However, if a short optical pulse is used, the order parameter is not able to
respond instantaneously. In this case the transient response of the order parameter
is governed by the equation [11]

v 3Q.s(t) = —a(T - T*)Qus(2) +W €AY (E%(2)Eq(t) —

at
-3 [E@P6.), 0
where v is a viscosity coefficient. The solution of the above equation is
Q)= [ (E20)B () -3 IB@ o) exp [“H]ar,  (17)
where 7 is the relaxation time given by
T= N} (18)

The induced index of refraction for polarized light, E = £E, can be written with
the help of Egs. (4) and (11) in the form
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From Egs. (19) and (17) we finally obtain for the nonlinear induced refractive
index the following equation

on(t) =280 [ | £ exp TF@ dr', 0)

9vn, J_ T

which gives the contribution of the optical Kerr effect to the induced refractive
index. It has been demonstrated that Eqs. (20 and (18) are in very good agreement
with the experimental results on the optical Kerr effect in MBBA [4] if the
temperature dependence of v in the isotropic phase is given by [13]

v =v, exp [2800/T]. (21)

IV. SCATTERING OF LIGHT

It is well known that nematic liquid crystals in the isotropic phase display
a considerable light scattering caused by thermal fluctuations of the order
parameter {14].

The intensity of light that has travelled a distance [ in a scattering medium can
be written as

I)=ILexp[—-al], (22)

where a is the scattering coefficient and I, is the intensity of the incident light. We
can write the scattering coefficient as

nubmab. 23)

where Q is the solid angle and R is the Rayleigh ratio given by [14]

1 dI, IAEQV; |4

R=1r36=(2) @i, (24)

where dI,/d€ is the intensity of light scattered per unit solid angle, c is the sepeed
of light in vacuum, V is the scattering volume and &y, (q) is the Fourier component
of susceptibility fluctuations that couples incident light polarized along i to
scattered light polarized along f.

The change in free energy associated with the fluctuations of the order parameter
in volume V is obtained from Eq. (14) as [14]

50, nw \ SF a<nw TG? T*)Qus Qs :w MOBXmHmuoa_ av, (@5)
v \%
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The equilibrium values of all Qs in the isotropic phase are zero and the field
dependent term in Eq. (25) vanishes if the orientational action of electric field is
neglected. The order parameter fluctuations may be decomposed into statistically
independent Fourier components, which gives

50, =75 {a(r-1[2 02 +3 (@, @) - 0ut@)’+
) : (26)
+ 2(Q%(q) + QL)+ op@: ,

where we made use of the tracelessness of Q.p.
Applying the equpartition theorem to various terms in Eq. (26) we obtain the
fluctuations in the order parameter. We find, for example

2, 2ksT
AOEA&VV - MA\QAN..I N..*v‘ ANQV

where k, is the Boltzmann constant.

The scattering vector ¢ is absent in Eq. (27) because we have not taken into
account the spatial variations of Q,s. Experiments confirmed a negligible influence
of these variations on the scattering of light in the isotropic phase of liquid crystals

14].
ﬁ From the fluctuations of the order parameter we obtain with the help of
Eqs. (24, (23) and (11) the scattering coefficient for a linearly polarized light

-1 fwg\* 2 8ksT
a3z () @0 w7 28)

It is obvious that the scattering of light rapidly increases as the temperature
approaches the fictitious second-order transition temperature T*. The scattering
depletes the power carried by the light beam and thus the electric field strength
acting on the molecules is smaller. In all equations describing the molecular
reorientation effective field strengths corrected for scattering must therefore be
used.

V. APPROXIMATE SOLUTION OF THE WAVE EQUATION

The Eq. (8) for the transient case can be solved numerically as in [15] or
approximately analytically using the paraxial approximation [9]. Since numerical
calculations for very large relaxation times, as is the case of MBBA, are not
available, we use the paraxial approximation in order to solve Eq. (8) with the
induced refractive index given by Eq.(20). We assume the beam to have
a Gaussian transverse profile and look for the solution of the form
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(29)
where f(z, &) =ro(z, £)/ro(z =0, &) is the reduced dimensionless radius, s(r, z, &)

is the .&wo.:& of the wave and £=¢—z/v, is the local time. The paraxial
approximation gives for the reduced radius equation [8, 16}

mmﬁmvuﬁlmeﬁx%m\ﬁ:.v ~,| \
f 322 K f(E) Snivrl | () QL ﬂﬁ o

The first term in Eq. (30) comes from linear diffraction, while the second term is
due H.o self-focusing. The integral in Eq. (30) builds up gradually with time in
transient self-focusing. Therefore the leading part of the pulse suffers diffraction
and the beam radius starts shrinking in later parts of the pulse when the integral
cmowanm larger. After a certain propagation distance the reduced radius of the
_m.mm_:m part of the pulse reaches a minimum value and the pulse then travels on
without appreciable change over the diffraction length of the leading part of the

ﬂ%n [18]. If f varies only slightly with &, we are able to solve Eq. (30) and obtain

(30

Az, @H%Tw&imongn exp [~ az] ﬁs A’(f) exp T: !ﬂ &@ +1,

Inarav T
(31)
where by exp [—az] we have taken into account the scattering losses. We may
regard the right-hand side of Eq. (31) as the first two terms of the exponential

function expansion and transform Eq. (31) into the form resembling the solution
for stabile propagation in [15]

1 _eo(Ax)* exp [-az] ﬁ A*e") exp T.Jﬂ &.:

re Yniriv T
(32)

The temporal variation of the reduced radius for a Gaussian input pulse with
a pulse-with 2b

fe.o=ew 5|

A%(t)=Alexp[-1/b?] (33)

as calculated from Eq. (32) is illustrated in Fig. 1. In the calculations we have used
z=10cm, ro=0.12 mm and the temperature T* =35.4 °C. The material constants
have been taken from [3b]. We see that for temperatures in the vicinity of the
transition temperature the pulse has a horn shape with the radius of the leading
part much larger than the radius of the trailing part. As the temperature is
increased, the relaxation time is decreasing and the radius starts to diverge at the
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Fig. 1. The reduced radius of the laser beam with

input power P = 1500 W after travelling a 10 cm

distance in MBBA as a function of local time. The

three curves are calculated from Eq. (32) for

three different temperatures: 1. T=38°C;
2. T=43.8°C;3.T=58°C.

Reduced radius

-15ns (1] +15 +30ns

ns
focal time

end of the pulse. Such behaviour is in good agreement with the resulits of numerical
calculations [15] and with experimental observations [5, 18].

The threshold power for self-focusing can be inferred from Eq. (32) in a very
straightforward way. The threshold power is defined as that power of the incident
beam at which diffraction is compensated by self-focusing, i.e. the radius of the
beam does not change. Hence, we have

E 2 " _
G A exp [—0) ‘s 5o Tﬁlt ﬂ dr', (34)

b’ T
where P = nirino €/ pto) A

Eq. (34) gives extremely low threshold powers of hundredths of watts. The
threshold power is decreasing with increasing pulse lengths at constant temperature
and the critical power for self-focusing (critical power is the threshold power for
pulse lengths much larger than the relaxation time of the medium) is in the region
of 50 Watts.

VL. EXPERIMENTAL ARRANGEMENT

The experimental arrangement is shown in Fig. 2. Our experiments were
performed with a ruby laser passively Q-switched by phtalocyanine in a nitroben-
zene solution. The pulse-width was approximately 30 nsec. To improve the
transverse mode structure a pinhole of a 2 mm diameter was placed inside the
cavity of the laser. The power incident on the sample was varied by neutral density
filters. In front of the sample-cell there was placed a further pinhole of a 0.24 mm
diameter to ensure maximal spatial homogeneity of the incident beam. With this
pinhole self-focusing into a single filament was regularly observed. The maximum
energy of the beam behind the second pinhole was approximately 0.16 mJ.

The . sample used was a nematic liquid crystal p-methoxybenzilidene-p-n-
butylaniline obtained from REACHIM (USSR). The transition temperature from
the nematic to the isotropic phase was 36.1 °C. The transition temperature dropped
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tot this value from 42 °C after a period of heating. This is a well-known effect of
“aging” of MBBA, which is known to be a rather unstable compound. A small
fraction of MBBA molecules decompose and the impurities thus created cause the
transition temperature to fall. As was shown in [17] the optical Kerr effect is not
influenced by impurities.

TO OSCILOSCOPE
D,

e =1t
G \ - / SAMPLE FILM

He—Ne

Fig. 2. Experimental arrangement for observing the self-focusing. D1, D2 pinholes with a 2 mm and
2 0.24 mm diameter, respectively, F1, F2 Schott neutral filters, L Q-switched ruby laser, Mi microscope
objective, He—Ne helium-neon laser used for optical alignment.

The liquid crystal was placed in a 10 cm long stainless steel cell that was thermaly
stabilized better than to 0.3 °C.

The beam cross-section was monitored at the exit window of the cell with
a microscopic objective and the magnified image of the filament was photographed.
The reduced radius was determined at half-maximum from microdensitometer
traces that were divided by the radius of the pinhole placed in front of the cell.

VIL RESULTS AND DISCUSSION

The reduced radius as a function of input power of the laser beam is shown in
Fig. 3. When the input power increases, the reduced radius decreases almost
exponentially until it reaches a limiting value. The solid curve in Fig. 3 is the
theoretical curve calculated from Eq. (32) at 0.0 nsec local time. We see that our
description is valid for input powers larger than the threshold power which is
approximately 600 W. At 3 kW some nonlinear process probably sets in to limit
the beam diameter. Since stimulated Brillouin and stimulated Raman scattering
appear at appreciably higher input powers [5] and the electric field strength in the
filament is not sufficiently large to cause the dielectric breakdown or complete
alignment of molecules [18], the two-photon absorption seems to be the most
probable limiting mechanism.

We have measured the reduced radius at half-maximum, whereas Eqg. (32) gives
the reduced radius at 1/e-th of the maximum. Therefore we had to divide all
calculated values by a factor 1.2. We had to calculate the reduced radius in the
centre of the pulse, i.e. at zero local time or better to say in the vicinity of the zero

228

local time. The reason is that photography is an integrating process, thus the largest
contribution in the image of the filament comes from regions with the highest
intensity, i.e. from the centre of the pulse (for Gaussian input pulses). The centre of
the pulse is not always at zero local time, but may, due to self-focusing, shift to
positive local times, as illustrated in Fig. 1. This is also the reason why the
determination of the threshold power for transient self-focusing by means of
photography is not very reliable.

The threshold power is usually determined from photographic measurements as
the power of the incident beam at which the radius of the beam after travelling
a certain distance in the nonlinear medjum starts shrinking. Since in the case of
transient self-focusing the threshold power is different for different parts of the
pulse, the trailling parts of the pulse start to shrink at substantially lower input
powers than the leading parts. The local time at which the reduced radius becomes
smaller than 1 depends also on the temperature. These reasons together with the
change of the pulse shape cause great difficulties in interpreting the results of the
photographic (i.e. time integrating) determination of the threshold powers.

We therefore decided to study the temperature dependence of self-focusing by
studying the temperature dependence of the reduced radius at a constant input
power rather than by studying the temperature dependence of the threshold power.

In Figs. 4 and 5 we show the reduced radius as a function of temperature for two
different input powers. We have chosen the input powers high enough not to fall
into the region where our approximation breaks. On the other hand, the input
powers had to be low enough not to set into action the limiting mechanism. The
experimental data are compared with theoretical curves calculated from Eq. (32)
with scattering (full line) and without scattering (broken line). The material
constants used were taken from [3b)}, the length of the sample was 10 cm and the

8 g

Reduced radius

a3t ]
Fig. 3. The reduced radius as a function of the
input power at constant temperatur T =43.8 °C. 02+ 1
The solid curve is obtained from Eq. (32) for zero 0 1 2 3 3 s
local time. Input power [kw}
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radius of the incident beam was taken to be 0.12 mm (the radius of the pinhole
placed in front of the sample cell). The fictious second-order transition tempera-
ture used in our calculations was 0.7 °C below the transition temperature, i.e.
35.4 °C. All the numerical results had to be divided by a factor 1.201 to transform
the radius at 1/e-th of maximum obtained by calculation to the radius at
half-maximum obtained from experiments.

We can see from Figs. 4 and 5 that the agreement between experimental points
and the theoretical curves with scattering losses taken into account is very good.
The theoretical curves shown were calculated for different local times, all in the
vicinity of the zero local time. At low temperatures the best fit to the experimental
points is given by the curves for positive local times (the lagging part of the pulse).
With rising temperature the local time giving the best fit is shifting towards the

centre of the pulse (zero local time). This behaviour results from the change of the

pulse shape with time, i.e. from the shifting in the local time of the maximum
intensity of the pulse. From the pictures of the filaments we find in fact the radius of
that part of the pulse which has the largest intensity, especially when the radius is
measured at half maximum of the intensity. The shifting of the maximum intensity
in local time was found also in time resolved experiments [5, 18]. It is interesting to
notice that from our essentially time-integrating experiments we can obtain also
some information about the changes of the pulse in time.

0.9 - - T

local time
0 ntec
0.75 rrec ] a8
1.5 asec

2.25mec local time

3 e . 100 asec

1 o7 2: 07Snmec 1
35 15 nsec

T T T T T ™ T

1
2
3
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s

[=]
& 8 8
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>

Reduced radius

Reduced radius

o
L

38 40 42

TEMPERATURE [°C] TEMPERATURE [*C]

Fig. 4. The reduced radius as a function of temp-  Fig. 5. The reduced radius as a function of temp-
erature at constant input power P=2900 W. The  erature at constant input power P = 4600 W. The

solid curves are obtained from Eq. (32) with

scattering given by Eq. (28) taken into account.

The broken curves are obtained from Eq. (32)

without scattering. The curves were calculated for
different local times.
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solid curves are obtained from Eq.(32) with

scattering given by Eq. (28). The broken curves

are obtained from Eq. (32) without scattering.

The curves were calculated for different local
times as shown in the figure.

The reduced radius calculated from Eq. (32) without scattering shows very weak
dependence on temperature in contradiction with experimental results. At higher
temperatures when the scattering coefficient is small the omission of scattering
causes only a minor disagreement with the experiment. As the temperature
approaches the transition temperature from the isotropic to the nematic phase, the
scattering coefficient increases dramatically (see Eq. (28)) and thus the effective
field acting on the molecules is weaker. This results in a weaker self-focusing effect
at a constant input power. We see that the temperature behaviour of self-focusing
in the isotropic phase of MBBA is primarily determined by the temperature
dependence of the scattering of light and only moderately influenced by the
temperature dependence of the molecular reorientations (the optical Kerr effect).

vil. CONCLUSION

In conclusion, we have shown that the temperature behaviour of self-focusing in
the isotropic phase of the nematic liquid crystal MBBA is primarily determined by
the temperature dependence of the scattering of light. The theoretical description
of the transient self-focusing in this compound based on the paraaxial approximate
solution of the nonlinear wave equation with the induced refractive index obtained
from the de Gennes theory is in good agreement with the experimental results.
Only for input powers in the vicinity of the threshold power the paraxial
approximation breaks down because of the greater role played by the off-axis parts
of the beam.
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