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APPROXIMATE CALCULATION OF THE BULK
AND SHEAR MODULI AND DEBYE TEMPERATURES
OF ORTHORHOMBIC CRYSTALS

J. K. D. VERMA*, (Miss) DEBASRI BASU*, Calcutta
M. D. AGGARWAL**, Kurukshetra

The Verma-Aggarwal approximation (VAA) for the shear modulus is employed in
conjunction with a similar approximation for the bulk modulus to calculate elastic Debye
temperatures of a number of orthorhombic crystals and the results are compared with
those obtained by other approximations. It is found that the proposed approximation
yields values of Debye temperatures much closer to the corresponding computationally
exact values than other methods.

NPHBIM, ;EHHOE BHIYHCIEHHE MOXYJIA OFBEMHOIO CRATHS
H MORYJISl CHBUI'A M JEBAEBCKMX IIAPAMETPOB
OPTOPOMBHYECKHMX KPHCTANIOB

B paGore nna pacyeTa meGaeBCKHX NapameTpoB HEKOTOPBIX OPTOPOMOHYECKHX
KPHCT2JII0B HCONB3YeTCs NpuGnukenue BepMa—ATITapBaIs 11t MOXYNS CIBHIA COB-
MECTHO C 2HANIOrHIHBIM NPHOMIDKERMEM A1 MONYNS 0GbeMHOTO casura. ITposonmTes
CPaBHEHME ITHX PE3YIHLTATOB C Pe3yNbTATaMH, MONYYEHHBIME TIDH MOMOUM APYFHX
npuGamwkenui. [loxasaHo, 4To npepnaraemoe NPUOIIDKEHHE AACT 3HAYCHUS NEGACBCKMX
NapaMeTpoB GoMee GITH3KOE K COOTBETCTBYIOILHMM TOYHO BITHCIICHHLIM 3HAYCHHAM, YeM
APYTHE METOfBL.

L. INTRODUCTION

The Debye characteristic temperature © is a parameter of considerable import-
ance in the study of a large number of solid state problems involving lattice
vibrations. The exact evaluation of @ from single-crysta] elastic coefficients, c;, is
not easy, since it involves solving a cubic equation and then finding the average
value of a function of the three roots. The basic relation defining @ is given by the
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where the mean velocity v is given by

i=1

Here g is the number of vibrating units in the molecule and all the other symbols
have their usual meanings.

Although the solution of the integral in Eq. (2) by a numerical method is
rigorous and exact, it is complicated enough even for such a highly symmetric
crystal as the cubic one and the calculations must be carried out with a computer
over a symmetry-irreducible solid angle using a large number of wave propagation
vectors or by using, in case of cubic solids, parameterized tables based on extensive
computer calculations by DeLaunay [2] and by Overton and Schuch 3].
Various approximational methods have, therefore, been devised for solving
Eq. (2). The conventional method of evaluating the integral in Eq. (2) for
non-cubic solids is to expand it in a series of barmonic polynomials. Using this
method explicit expressions have been obtained for various crystal symmetries [4].
The method proposed by Fedorov [5]is also applicable to solids of all symmetries.
However, both the polynomial and Fedorov’s method are unwieldy, involving
cumbersome calculations.

The purpose of the present paper is to demonstrate that the VRHG method [1]
can yield quite accurate values of Debye temperatures without being prohibitive in
time and effort provided that a suitable averaging of single crystal elastic
coefficients is done to obtain effective bulk and shear moduli. The method which is
briefly outlined in the next section is applicable to crystals of all classes and has
been applied here to orthorhombic crystals.

Il. NEW AVERAGING METHOD AND AGGREGATE DEBYE TEMPERATURE

The mean velocity [Eq. (2)] can also be determined from averaged ¢; obtained
by replacing the single-crystal with an isotropic aggregate, and by assuming the
aggregate to behave as a Debye continuum. This average mean velocity, denoted
by ¥ in this case, is given by

where
chnw._.wm 4)
and
ovi=G. (5)
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Here B and G are the bulk and shear moduli, respectively. The Debye temperature
can be calculated with the help of Egs. (1) and (3)—(5) and is generally referred to
in this case as @,,,.

The isotropic constants B and G can be calculated from ¢;’s using the
well-known relations of Voigt [6] and Reuss [7]. These relations represent the
upper and lower bounds on these constants, respectively. Hence an arithmetic or
geometric mean (AMA or GMA) of the two extreme limits has been suggested [8]
to calculate the values of B and G. The arithmetic mean is widely used for
computing Debye temperatures [1, 9]. It has been found that the values of 6.,
calculated by using GMA are closer to exact values than those where AMA has
been used [10, 11]. Shukla and Padial [12] have proposed the harmonic mean
(HMA) between the extreme bounds. This approximation has been found to be
even better than GMA. Recently, Verma and A ggarwal [11] have suggested
another approximation, referred to hereafter as VAA, for the shear modulus, viz.,

muwﬁiwml, (6)

where Gy and Gy, are the values of G in the Voigt and Reuss relation, respectively.
The values of @,,,, using Eq. (6), have been found to be in excellent agreement
with the corresponding computationally exact @ for a number of cubic elements,
semiconducting compounds [11] and alkali halides [13].

For cubic crystals, B is uniquely determined. However, for non-cubic symmetry,
no such unique relationship exists between the bulk modulus of single crystals and
that of polycrystals. Thus, B(C,) must be specified as part of the averaging method.
The values of B in AMA, GMA and HMA are given by the corresponding similar
relations in G [11]. The value of B in VAA is given by

where By, and Bk, are the values of B in the Voigt and Reuss relations, respectively.
So far only AMA has been used to calculate & of orthorhombic crystals [1]. All
the three approximations, viz., GMA, HMA and VAA have been used in this

paper in order to compare their relative accuracies with respect to the exact value
of v obtained by numerical integration of Eq. (2).

III. HARMONIC POLYNOMIAL SERIES EXPANSION METHOD
The value of @, using this method, is given by the relation

“% Agv (®)
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where

C\”w:u@lzu l—\u. on

It has been often found that information on the value of ¢, the number of
vibratiug units per molecule is lacking althoug ¢; data are available,
It has also been observed that different chemical formulae for the same crystal

€xample is that of topaz. The formula used by Joshi [14] in his calculation is
AL(F-OH),SiO., while that quoted elsewhere [7,15]is 2 AIFO-Si0,. Thus it may
lead to different values of Debye temperatures even though v, § or U; may be the
same. In order to eliminate this ambiguity and to obtain information about the
relative accuracy of different methods of calculating Debye temperatures, it will,
therefore, suffice to compare only v, & and v, and this has been done in the present
paper. The Debye temperatures can then be simply obtained by multiplying v, ¥ or

v, by @FYGZ&@R.ESVS if no ambiguity exists regarding the values of M
and q.

IV. RESULTS AND DISCUSSION

Although ¢, values are available for a number of orthorhombic crystals, the
choice of the particular crystals here has been confined to only those for which
exact values of v are available in literature [16]. For the Baryte and Rochelle salt

other; calculations were carried out for both sets and these are represented as
Baryte-1 and Baryte-2, Rochelle salt-1 and Rochelle salt-2 in Table 1. The

references for experimental data, ¢, and @, used in the calculations of mean
velocities are listed in Table 1.

The elastic compliances, s,’s can be computed from elastic stiffnesses. ¢. ’s or vice

The mean velocity i has been calculated using four averaging methods, viz.,
AMA, GMA, HMA and VAA. The mean velocity v, has also been calculated,
using both six term and seven term polynomial expansions. The results of these
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Table 1

Mean velocity (10° ms™') and relative percentage error of some orthorhombic crystals according to
different methods. The relative error for each crystal is given in the second row, { is the anisotropy
parameter.

<

Yy

Marerial o E AMA GMA | HMA VAA 6-terms 7-terms o
Topaz (14] 0022 6342 6341 6341 6330 6337 6342 6330
0.I58 0.142 0142 0032 0079 0158
Olivine (16] 0038 5472 5472 5472 5455 5443 s4g0 5400
1165 1165 1.165 0850 0629 0740
Todic acid (4] 0072 2139 2139 2138 2127 2122 2134 219
0612 0612 0564 0047 —0.188 0376
4 Clgritim [16] 0092 2324 2323 2322 2308 2314 2313 2300
0.868 0825 0781 0.174 0434 039]
Keagariite (14] 0104 3992 3990 3987 395 3933 3971 304
1268 1218 1142 0431 -0228 073
Strontium [(16] 0129 2881 2879 2876 2853 2849 2862 2840
formate 1444 1373 1268 0458 0317 0775
dihydrate
Baryte-1 [16] 0164 2585 2542 2538 2514 2606 2615 205
0.792 0673 0515 -0436 3208 3564
Sulphur [16] 0170 2020 2016 2014 1993 2015 2018 197g
2123 1921 1820 0758 1871 2.0
Baryte-2 (16] 0178 2492 2488 2484 2459 2538 2507 2463
L177 1015 0853 0162 3045 3410
Sodiums 7] 0240 2388 2382 2375 2346 2303 232 2.364
ammonium 1015 0761 0.465 —0.761 -2.580 1480
HN—‘ﬂﬂknﬂ
Goslarite (18] 0288 2794 2783 2773 2737 2953 3006 2758
1305 0906 0.544 0761 7.070 5992
Rochelle [16] 0317 2382 2372 2361 2329 2268 2305 . 2356
salt-1 1104 0679 0212 -1.146 -3.735 -2 165
Sodi (16] 0333 2478 2465 2453 2419 2336 2397 2458
tartrate 0.814 0285 0203 -1.587 —4.963 2 g
Rochelle (16] 0340 2401 2388 2376 2343 2270 2306 236
salt-2 L651 1100 0593 -0804 -3.895 37,
Potassium [16] 0468 2360 2340 2319 2285 2362 2304 2264
pentaborate 4240 3357 2429 0972 4329 5747
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calculations are presented in Table 1. Exact values of v, obtained by numerica)
integration of Eq. (2) and denoted as Uexac, Ar€ also included in Table 1. For the
sake of ready comparison, the relative error velocity A, expressed in percent, for
different methods is also shown in Table 1 in the second row against each crystal.
The relative error velocity has been defined as

Uy = U
A= , (15)

U exace.

where v, is either ¢ or vs..

It is seen from Table 1 that, in general, the proposed averaging method (VAA)
for B and G yield values of § closer to v.,., than any other method. It is further
seen that the trend is for various §’s to be ordered according to

Uama = Uoma = Upna = Dyan. (16)

Contrary to expectation, it has been observed that, in general, A, when the
six-term expansion is used, is less than that for the seven-term expansion.

For a detailed discussion of the results it will be convenient to define the
anisotropy parameter of non-cubic crystals. In case of cubic crystals, the anisotropy
is evaluated through the relation 1 =2c,./(c,, —c¢12). The degree of anisotropy is

Q<'Q~m

L= G.

(7

might be a good way to express the anisotropy of a non-cubic crystal. This
anisotropy parameter is also listed in Table 1.

Fig. 1 shows the distribution of the crystals in the plot of relative error, A versus
the anisotropy parameter £. (Here only the magnitude of the relative error has

have been shown in Fig. 1, since the errors for other methods are, in general,
relatively large, as seen from Table 1.

Itis seen from Fig. 1 that the crystals fall into two distinct groups, with ¢ less than
0.2 and ¢ greater than 0.2. Topaz, olivine, iodic acid, a-uranium, aragonite,
strontium formate dihydrate, baryte and sulphur form the first group, while sodium
ammonium tartrate, goslarite, Rochelle salt, sodium tartrate and potassium pen-
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Fig. 1. Dependence of relative error A on the 8
anisotropy parameter £. The crosses (X ) indicate

Goslarite
% . - x
senes expansion (6-term) values while the closed

circles (@) show VAA values.
6
Eal { Sodium Tartrate
et x
m Por. P Borare
& 4] xgrn__m Sait-2 X
& x
” Baryte-t Rochelle Saft-1
w x
2 x
2 Baryte-2 %
o Sodium Amm. Tartrace
g,
x
Sulphur -
{ Olivine . ”
M . . - '3
xe ® o
x
ey o I N L
0 o1 02 03 04 [+1)
ANISOTROPY ¢

taborate form the second group. It is seen from Fig. 1 (and Table 1) that when we
use VAA for the first group of crystals the relative error is less than 0.5 % except
for olivine and sulphur. The relative error for the six-term series expansion method
is also nearly the same for £ <0.15 but is considerably larger — between 2 to 3.5 %
— for Z lying between 0.15 and 0.2. It is also seen from Table 1 that for this first
group of crystals, when VAA is used, A is much less than that for AMA, GMA,
HMA or even the seven-term series expansion. In the case of olivine, aragonite and
strontium formate dihydrate, the six-term series expansion seems to be slightly
better than VAA. Since the Voigt [6] and the Reuss [7] relations define the upper
and lower bounds on elastic moduli G and B, it is expected that v.,,., should lie
between vy, and v reuss- HOWever, it has been found for olivine that v Reuss,
calculated by using G g.... and B g.... values in Egs. (4) and (5), is larger than v <o
The reliability of ¢, data for this material is, therefore, to be viewed with caution.

For the second group of crystals, the relative error if VAA is used is about 1 %
except for sodium tartrate for which A is 1.6 %. The values of A for the six-term
expansion for this group of crystals are 2 % and above: the error for the
Seven-term expansion is slightly higher. It is further seen from Table 1 that for this
group of crystals, Usma is always closer to Veraer. FOT S0dium tartrate and Rochelle
salt-2, even U awma is closer to v, than Uvaa- It may be pointed out that ¢; data for
the second group of crystals are rather old and need careful rechecking. No recent
measurements have been reported for these crystals. In the opinion of the authors,
the A value if VAA is used would be low if ¢;’s are determined accurately and
carefully checked for internal consistency.

The dearth of reliable bulk and shear moduli data of truly polycrystalline
material — free from errors like porosity, nonisotropy, etc. — precludes at the
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present state any further possibility of judging the relative merits of different
averaging procedures for B and G merely by comparing the calculated and
experimental values of these elastic constants. Under these circumstances one has
to depend only upon the degree of relative agreement between ¢ values calculated
by using a given averaging method and U aee Values.

V. CONCLUSIONS

a physical basis, the empirical validity is demonstrated by a fairly good agreement

between the computed mean velocity ¢ and v.,,., values. This suggests indirectly .

that the proposed approximations for the bulk and shear moduli of a polycrystalline
mass are far superior than any other existing ones. Moreover, the proposed method
is simple and does not involve lengthy computations. The application of this new
averaging procedure to other non-cubic symmetries will be dealt with in a later
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APPENDIX

Explicit relations for obtaining s,s from stiffnesses c,s for orthorhombic crystals are given below :

2
_€22C33 €3

Su= D
2
_.C11€33 — €1y
Sy = D
2
_CuCn—Ci;
Sy = D
Su=1cey
Ss5= H\ﬁuu
Se6=1/Ces

€13€23 — C15€as

Spp=
12 U

_C12€23 — C13Cp

S =
13 u

1213 — €€y

§23 D

where

2 2 - ]
D =cy 055+ 2¢12€15623 T €1i€23 CiaC33 — C13Cy; -
To obtain c¢;’s from 54’8, one has to replace ¢4's by s,’s in the above set of relations.
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