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TUNNELLING THROUGH COMBINED
POTENTIAL STRUCTURES
I. GENERAL CALCULATIONS

SILVESTER TAKACS*, Bratislava

The procedure for calculating the relations between two arbitrary amplitudes of wave
functions in different regions of the system potential barrier-well-barrier s evaluated.,

The knowledge of these relations enables to calculate the probabilities of finding the

potential well). Especially “shallow” and “deep” wells are considered. In both cases
interesting results concerning the resonance tunnelling effects (ideal transmission of
particles with special energies) are obtained.

The intervals are determined, in which the transmission coefficient D has a maximum
(D =1) for particle energies smaller than the height of the potential barrier,

For well depth equal to the barrier height conditions are studied under which the
system is ideally permeable for particles with infinitesimally small energies.

TYHHETHPOBAHME 9EPE3 KOMBMHMPOBA HHBIX
NIOTEHIIHA THBIE CTPYKTYPBI
' L. OBIME BBIYMCIEMHAS

B pat6ore paccMaTpuBaeTcs MeTon BhreHCrCHUS COOTHOWICHHS MEXNY NByMS npo3-
BONBHBIME AMILUIHTYRAMH BONHOBOM dyHkuMM B pasmpix O0NaCTIX CHCTeMBI Baprep-
—AMa-Gapuep. 3namme 3THX COOTHOLIEHMI MO3BONAET BHITHCTHTE BEPOATHOCTH HAXOXK-

HbIC PE3yNbLTaThl, CBA3IAHHBIC C PC30HAHCHBIM TYHHENLHLIM adbexToM (Mpeanshoe
IPOXOXIIeHHe 9acTHI C OnpeNeneHuOH 3HEprHeH).

Onpenenennl Taxxke 06nacTH, B KOTOpbIX s HaCTHI( ¢ 3HEPTHE# MeHbIle BHICOTL!
BOTCHUMANLHOrO Gaphepa B k03thpruMenTe Tpoxoxnenns D noseasercs MaKCHMYM
(D=1).

* m_quoﬂon::mn_aw istav SAV, Dabravski cesta, CS-809 32 BRATISLAVA.
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L INTRODUCTION

The possibility of particle transmission through regions in which the potential is
higher than the kinetic energy of the particles (tunnelling) is one of the most
Interesting quantum phenomena and its experimental verification belongs to the
most efficient proofs of the quantum mechanics — as po classic analogy with this
phenomenon is known. Meanwhile, the non-zero amplitude of the bound state
wave function of a potential hole beyond the hole expresses the same phenomenop
(unless the height of the potential walls is infinite — the particle in the hole can be
localized only in this case).

In addition to some already “classical” systems (e.g. the a-decay of atomic
nuclei), the existence of the tunnel effect was shown in solids by measuring the

For ZLLS Systems, the linear voltage-current dependence was clearly proved,

as calculated from the theory with constant electronic density of states near the

different cases, so, e.g., in the tunnelling of normal and superconducting electrons
through thin films, the field emission of electrons from surfaces, etc,

The most applicable theory with some corresponding experimental results was
worked out for the study of normal and Superconducting electron tunnelling

z:.ocmn thin dielectric layers [1, 2], as well as for the Spectroscopy of gas atoms on

needed) and the WKB method (for calculating the absolute values of the tunnelling
ormSoﬁoJmaa@. The form of the corresponding potential was no more a simple
example of the potential barrier.

Tesonance tunnelling (i.e. maxima in the tunnelling probabilities) has been known
for a long time [5]. The maxima in the tunnelling characteristics — as the resuit of
these resonances — have experimentally been well established [4].

In addition to the “classic” example of the Kronig-Penney model, where the
resonance tunnelling causes the appearance of filled (in some cases ideally
conducting) and forbidden bands of the electron states, tunnelling through

barriers with a potential well in between, compared with the barrier alone) has
been neglected in those cases where the form of the potential is unambiguously of
the form barrier-well—barrier (BWB) [6, 8].

So far mainly [9, 10] double potential barriers with different mutual distances
have been studied.

However, a potential well between the barriers (well relatively to the potential
far from the system BWB) can substantially change the transmission probability
and other tunnelling parameters [11], mainly with regard to the fact that stable
eigenstates (bound states) of the well exists (there does not exist any bound state
for the double barrier system without the well!).

The study of those combined potential structures can be important in solid state
physics (ionized impurities in solids), but also in biological systems, in the theory of
a-decay, etc.

There are only a few papers dealing with the influence of the form of the
potential barrier on the tunnelling characteristics [9, 12—15]. However, all these
papers confirm the result that the “finenesses” in the potential form are not so
important as one would expect at first sight. :

The same statement is true for the combined potentials, as we shall show in
another paper: the results remain nearly the same not only qualitatively, but even
quantitatively.

Since in in some cases the motion of electrons in such complicated potential
structures is assumed to be the fundamental mechanism of the electric transport

the last years [8, 17}, we study some phenomena connected with the tunnelling of
electrons through double barriers with a well between them.
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Fig. 1. The parameters of the system bar-
rier-well-barrier.,

the system with Us<0 will be more frequently realistic, as e.g. for the double
Schottky barrier [6]. Generally, the Potential behind the well can be different from
that in front of jt (for €xample due to applied electric fields).

Throughout the paper we confine ourselves to one-dimensional calculations,
Some remarks about three-dimensional effects will be given later [ 18]. The volume
is then divided into five regions and we calculate the transmission probability for
arbitrary values of the barrier and we]] heights and widths.

We therefore take the potential of the following form :

¢ U=0 for x <0, 1)
(an U=U, for O<x<d,,

(I11) U=U, for d,<x<c+d,,

av) U=U, for c+d,<x <c+d,+d,,

(V) U=AE for X¥<c+d,+d,.

The solutions of the Schrédinger €quation in these regions are

W, = Ak 4 B,e
Y =Ae** 4 Bgkn
m = A, 4 B @)
Vv =A™ B e ke
Wy =A™+ B e s
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where

V2mE V2m (E-U) V2m(E - U,)
k= T, ky= k= s
h h h
(3)
V2m(E - U,) <N3~m+bmv
\? = s \ﬂu = e
b h
For calculating the transmission probability
= [As[?
D=|2

or the reflection probability, R =1 — D, a formal method was developed by Kane
[19]. However, the results of this method are too complicated when one is trying to
use them for general potential forms, .

Our method is somewhat similar, but the evaluation is simpler and the results are
more lucid.

continuity conditions of these functions and of their derivatives on the connections
of neighbouring regions.

In the following considerations we assume that the particle is coming from the
left to the system BWB (i.e. amplitude B;=0). We obtain then the following
System of equations from the continuity conditions

>H+W_H>~+m~

i ~ik ik,d —ik,d.
A 4 Bre ke = g oiks ‘+ Bse N
\wuomxuﬁ_iv+wumlmauﬁ.tvH\ﬁan:n.i.:v.*wantﬁ.ﬁ_:vq
}AOF;?+&_+&~V+maOIm»;Ao+&~+&n~”\»mﬂm»u?‘.&_.‘vkuv

>

\ﬂ_?ﬁ_ Im_v = \SA}N IWNY

. . i —ik.d
\ﬂnﬁ\%&@.kuk_ vawﬂ .knk_v = \ﬂuﬁ\ﬁu@ .kuk_ - .muﬂ .»u —v »
k A.> Om»ui_.ynv.lw Ol.,»ui_:vv |\ﬁaA>a0=£E_+nvlmaﬂl. .E_f&v
3\Ay 3 = »
\?A\» O:ﬂ?;&?&%lm Gl..».?i:.{wvv =k \»mm..»m?+&_+&uv
4 4 = Ks. -

After a simple Tearrangement we have then
>~Q~ +w~\.: ”\»n
}—@— +w~Q~ ”wu

.- e
Axgye’ih L g ok, Y= A,
mAkuA—LﬂuK

A,hse '+ Byg,e M= g
St T BageT =g,
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ik, —k d i(—k -
}u%u@.a PN _v+wu\~u®A ks »u:n+&_v”>a
\Qu}ummA»qu».VAn;rn_v+mquu®:|»u+x.xn+}v” B,

>»Qa0§.ﬁr£?+ﬁ+kuv+ w&banxl».lwmxi.}Av&“v”>m
\waba@:wﬂrkmxli.;»mt.*. maQunxlf.;Mxn;_J{i =B,

where \:umT; ki v gp=1 A:hv, i=1,...4.

N Nﬂm.#n N \ﬂ...?—
This can be simplified by the matrix notation
P.”EE&,,I: AMV
where g, = AMV and p® are 2 X 2 matrices with the components of the [eft side of
the equation pairs “4):
1) (1) .
m_ (P11 EEV”AQ_ x:v 6
P= (i pi3)= (4 ), =

@ @ ity —k)d (~ky—k)d
@_ (P Piz) _ (g% p oitky-kpa,
p = pP p®)= by athod, g ki, |5

etc. :
By assuming that the particles are coming from the left (Bs=0), one obtains
immediatly
@

as well as

@ @)

- @__ P Piz

>ml>a 11 = (4) .
D2

The further procedure is then Very easy, but rather cumbersome : the equations (4)
are to be rearranged in the Way to obtain A,,,(A,) and B, (A:), respectively.
For convenience we introduce the notations

@) @)
;= E’m- = p2ilk,— 101 i m.. 2k, of, ; ”ﬁ’ﬁ_ = n@ 2ikf;
L e
i ) [ 3y i > i i) >
P22 g: P2 g

2
G =P~ KH) =p(1- 2 ),

where f, =0, =d, fi=di+c, fi=d,+¢ +d,, and then consecutively
gaﬂmf EUHO,
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_H+M,. I

5 1+M,.,K;°

i=1,2,3.

We obtain then

G

w..ulgxﬁ: A= m~+g..+~mu

1=1,2,3,4,

In this way one can obtain the dependence of two arbitrary amplitudes of the wave
functions (2).")

Hence, we have also the As(A,) dependence which Wwas our main task in the
calculation of the transmission probability :

\# — > QMQNQuQ&
R +M.K) (1+M.,K,) (1+MK))"
After elementary modifications and substituting the components of the matrices
(6), this expression has the form ,
As_
>~ -

AAQ~QN + \:\;QNFN&QAQuQ& + \ﬁu\NAON:F&~v + Oum»unAﬁnmu + \:Qmﬂﬁkuhnv .
X A\nw@& + }a@u@wi-&»v~l~ .

AQMINMVAQW'\NWVAQW'\mWVAQw|}wvﬂmkuk_+mwuh+mku&~I$mAn+&_+&nvVA

Since there holds

2_gz2_1 ky ki Wlmvlm
g F:AA:N»HW 1+232-2 -
k

etc.,

the result is
\»M »u —ik (c+d +d )i l;uk ;wm— lmkxku
A, kS T TRl(919:7 Y + hyhyetety (g ge et 4

+hshae™h)e T 4 (g, ekt 4 hig* ) (hyg,em*et 4 (7)
- + }hﬁuosgkuvomkunglm .
This general result is used for the calculation of the transmission probability D in
the next section, as well as for calculating the transmission time of the particle
through the system barrier-well-barrier in a following paper [18].
_—

") From these amplitudes not only the transition probabilities, but also other quantities (e.g. the
transmission time) can be calculated [18].
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L. SYMMETRIC DOUBLE BARRIER

In this section we pay attention to the case of two identical potential barriers with
a potential well (relatively to the barrier height) between them (Fig. 1, dotted
lines).

This means
:=U=U
&NH&._H&.
AE =0,
Then we have
ko= k,=iK, wuésm\umv,
kn“\ﬂMw
Q~”WAH+%~WV« \:”Qﬂ.
1 i %
QNHM AH.TM s &NHQ“:
1
QuHMAH.?Wv. hy=g%,
1 i "
QAHMA~+N » hi=g¥.

The result is then
m:.u\ U \Sm (ksc)cosh*(Kd) + sinh*(Kd)] +
+F; sin (k;c) sinh (Kd) cosh (Kd) + ®)
+if 2 sin (ks [F, cosh® (Kd)— F, sinp (Kd)] -
~ F, cos (kyc) sinh (Kd) cosh :&L ‘ ,
[Fi— F, tanh® (Kd)] tg (ksc) — F. tanh (Kd) tg (ksc)
1+ tanh® (Kd)+ F; tanh (Kd) tg (kac)

L
arg AMIMV =arctg 2

>

where ki, k. K®  kk,
~l\mu+'~v ﬁnlm\«’u+ K’ o
K kK g
? ks, K’ 4 k, K-
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The transmission probability D = Tf\}_w of the symmetric double barrier is
then given by
Wu (4+ FY) cosh (Kd)+ (4+ F3) sinh* (Kd) + 2(F, F, 4 4) sinh® (Kd)
X cosh® (Kd)] + cos (2¢k3)[(4 - F?) cosh® (Kd)+ (4~ F2) sinh* (Kd) +
+2(3Fi-F*+ 8) sinh® (Kd) cosh? (Kd)] + 4 sin 2cks) x
sinh (Kd) cosh (Kd)[(2F, - F,F,) cosh? (Kd) + (2F, + F,F,) sinh® (Kd ).

(10)

IV. DISCUSSION

IV.1. Shallow wells between the barriers

The dependence of the transmission coefficient D for the symmetric double
barrier with not too deep wells is given in Fig. 2 for different values of the

V2mU
h
different ratios of the well depth to the barrier height y = |UssU |. These curves are
very interesting and demonstrate the existence of minima and maxima of the

transmission coefficient D .
From the relation (10) one obtains the conditions for the extremes (minima and
maxima) of the function D(E):

tg (2¢cks) =4 sinh (Kd) cosh (Kd) x

. (11
o (F; - F\F,) cosh® (Kd) + (2F, + F,F,) sinh® (Kd) )
(4= F7) cosh® (Kd) + (4 — F?) sinh* (Kd) +2(3F% - F} + 8) sinh’ (Kd) cosh? (Kd)

One has then two types of the solutions of (11), as there are two independent
combinations for the sin (2¢ks) and cos (2¢ks) which fulfil the condition (11).
Therefore we have maxima . . v

parameter g = d, different ratios of the well and barrier width b = c/d, and

D...=1, (12)
corresponding to
1
cos (2¢ck S em————— 13
(Bck)=_ 1+1tg” (2cks) =
HW ANﬁNﬂuv

in (2ck;)=—82cky)
sin (2cks) ~Vi+ig (2ck)

and minima

h *
Do = [F: cosh® (Kd) + F, sinh? (Kd)) (14)
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corresponding to the functions sin (2¢ks) and cos (2¢cks) with positive signs of the
roots in equation (13).

The value of D, is always smaller or at most equal to the transmission
coefficient of the double thickness barrier (without well) for the given energy, as
Fi=2, F,=2.

The existence of “loss-free” transmission for energies smaller than the height of
the barrier is at first somewhat surprising and it assumes the existence of some kind
of resonance waves of the given energy in the barrjers.

This case is like the quantum-mechanical “transmission” of the simple potential
well [2], where only waves with special frequencies are ideally transmitted, because
one has interferences on the walls only for these frequencies.

Bohm [2] compares the effect with the classical optics, where sharp interfer-
ences occur due to sudden changes of the optical coefficients (e.g. in the
neighbourhood of boundaries).

The total transmission of the double barriers with a well (ie. the total
transmission of the System in the case when the particles come with equal
probability independently of the energy) is much larger than for the single barrier
with double thickness (this means the limiting case c—0).%)

The number of maxima increases very markedly with the increasing value of g
(for not very deep wells) and the width of the maxima is narrowed (mainly for the
maxima in the small energy regions). On the other hand, it is somewhat surprising
that the maxima are shifted to higher energies with the deepening of the potential
well. With the deepening of the well we have a smaller number of the maxima of
D(E) (and therefore also the number of resonances), which is surprising if we
consider that the number of eigen-states of the given potential well is increasing
with the increasing well depth.

It is also very interesting that for U, <0 (i.e. if we have a “true” well between the
barriers) there is a finite distance ¢’ between the barriers, for which D=1 for
infinitesimally small energies of the particles (k1= 0).

Hence, e. g. for U,= — U, this occurs for

2 sinh (K'd)

"y 5
'8 ek =1 G Ky t1s)
where K'=V2mU/n.
If K'd> 1, the condition (15) means
cos (2¢'k;)=—1 (15%)

*) This is valid in the case where D has a maximum. As we shall see later this is no more true for deep
wells.
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and the distance ¢’ is then

c'= %\Mﬁm?lwvu%?lw. (16)

where 7 is an integer.
For the barrier height of about 1 eV (we assume further the equal depth of the
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Fig. 2. The transmission coefficient D of two identical potential barriers with height U and width d,
separated by a well with depth U, and width ¢, for energies smaller than the potential barrier height
(E<U). y=|Us/U|=0, —m=y=l ey =2 ... €=0 (double barrier without well).

a)a = V2m Ud/p = rvHn\&HuN\N,SQHr@Hwa.ovQum‘vuma\a.&anw.vnua\m.
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well) the smallest distance is then Cenimy fOT Which the system BWB will be ideally
permitive for the infinitesimal energies, about

Coin~10""cm. (17)

The relation ( 15')is relatively well fulfilled ford >107 cm. For the barrier height
of about 1 o.< and the width d > 107 cm the relation (16) is therefore independen¢
of the barrier width d and the minimum distance between the barriers (with

the transmission probability is naturally real,

Hsmmmm.w,goaom::m monvwnmao energies higher than the barrier height are
shown, too. : .

IV.2. “Deep” wells between the barriers

We concentrate now our attention upon the case of a deep well (i.e. large values
of y=|Uy/U|, which can be very important in solid state physics (see [18]).
Figs. 4a, b show the transmission coefficients for ¢ =2 and y =5, 20 and different
distances between the barriers p =c/d.

It can be seen from these figures that for not very large values of b there is at
most one maximum for E <U. The intervals with maxima and without them

05

2 E/u 3

Fig. 3. The transmission coefficient for a=2and y =( (which represents all features of “shajlow™ wells
between the barriers). The ratio b is given at the corresponding curves.
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“alternate™ almost periodically. The value of the lower (b1) and upper (b2) limits of
these intervals with the maximum of D,

b,<b<b,,

can be obtained from the conditions

lim D(E)=1 and Iim D(E)=1,

E—0Q E—1
respectively.

These conditions result in transcendental equations

4 sinh () cosh AQvT\m cosh? QVIP sinh? AQL
Vy
ﬂm ANQU_/\Mv” H EH
y cosh® (a) +\ﬂ sinh® (a) -6 sinh® (a) cosh? (a)
Hmﬁgsivn daVi+yly(@®+1)+a ]

y(@*+ 1)+ 2ya*(a’— D+a*(a®~4)

These equations seem to be very complicated at first sight, but after some
rearrangement and using the relations

-2 - 41tg (x)
8 (2x)= T-tg ()" @ (4x)= 1-6tg" (x) +tg* (x)

we have

tg m ?év = ﬁﬂ.\w&,

2 2
QQ+E+:,‘IHH - 4a’(1+y) ~

20V1+y ~Q~Q+§+E~

One has therefore radical changes in the transmission coefficient of the system
BWB (i.e. with or without a maximum) with relatively small changes of the
parameters. The differences are really very large, as one can see from Figs. 4
(mainly for larger values of ). One can see from the obtained results (mainly in

this section) that the most important parameter of the system BWB is the

a

combination abVy. This will be confirmed by our further calculations, too [18].

The drastic changes of the transmission coefficient are transferred also into the
total transmission of the system BWB (e.g. with the Maxwell—Boltzmann distribu-
tion function [18]).
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V. SOME COMMENTS

One could think that Some results of this paper (e.g. the sharpness of the
maxima, the exact value of D, = 1) are the consequence of the model (sudden
changes of the potential between the barriers and the well). One can show,
however, that this is not the case : also for smooth changes of the potential and even
for potentials with “tails” there are similar results. Therefore the step-like
structures of the potential describe the tunnelling phenomena very well also for
combined potential structures,

The results for the transmission coefficient of the system barrier-well (or
well-barrier) are very interesting, too. However, as we do not know such systems in
reality, we do not give the reults here.

D

1

sl
9
S
<
\
A
/

B

E/U

Fig. 4. The transmission coefficient for @ =2 and ¥=5(a), y =20 (b), which are the case for “deep”
and “‘very deep™ wells, respectively. The numbers are the b values.
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Concluding we wish to remark upon the biological aspects of tunneling in
biological structures (e.g. through bilipides of membranes). As far as the transfer of
ions is considered, it seems to be all right: the electrically charged particles tunnel
through the potentials created by the electrostatic fields (but it is very important
that one single ion can change appreciably the potential structure in the neighbour-
hood after tunneling). For other materials (saccharides, macromolecules), the
potential can be influenced if the concentration of the given substance is changed
on one side of the membrane (it can mean, e.g., the enhancement of the ground
state energy of other molecules) and the potential can be built up by electrostatic,
electromagnetic, but mainly by osmotic fields.
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