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STOCHASTIC MODEL
FOR SEQUENTIAL PRODUCTION PROCESSES

MIKULAS BLAZEK*, Bratislava

In the present note we formulate explicitly the probability to observe (arbitrarily)
given numbers of several sorts of particles; it is assumed that in the intermediate state
represented by a modified (i. e. including forces) urn the processes run stochastically. In
the corresponding limits already that approach leads to several forms of asymptotic
relations which can be interpreted as the Pomeranchuk theorem or as the alternative
dimensional counting rules.

OHQVDVQHEGHOE MOJIENL
U MOCNENOBATEABHBIX NIPOLECCOB POXIEHHS

B cratse npusegesa smHag dopmyna seposTroCTH HabmoneHns (npou3BoMbLHLIX)
33[aHHBIX KONMYECTB pa3HbIX COPTOB YacTHIy. Tipu atom fIpeanonaraeTes, 9o
B IIPOMEXYTOYHOM COCTOAHHM, NIPEICTABNEHHOM MOTHDAUHPOBARHBIM (T. . ¢ BRITIONE-
HHEM CHN) SLIMKOM, (IPOUECCH! NPOTEKAIOT CTOXaCTHIECKH. YXe 3TOT yNpoweHHbIH
TIOIXOR IPHBONHT B COOTBETCTBYIOLMX NPEAENAX K PA3NHIHBIM BHIAM 2CHMITTOTHYECKHX
COOTHOWIEHHY, KOTOPBIE MOXHO HHTCPIPETHPOBATE Kak Teopemy IToMepanyyka win xe
KaK anbTEpHATHBHbIC MPABHIA PA3MEPHOTO CYETa.

L INTRODUCTION

Increasing number of different models trying to explain the data in the high
energy region leads to the suggestions to create an approach based on a simple
formulation of the fundamental properties of the production phenomena under
consideration. Let us mention e. g. the recent calls for “a standard jet model” [1],
[2], the renewed claims that “the physical phenomena must be explainable in
a simple intuitive form” [3] and the suggestion “‘to critically examine what is the
minimal amount of theory needed to interpret the data (or at least most of it), keep
that much, throw away the rest, and rebuild” [4]. :

It is worthwhile to emphasize that especially the urn models [5] sufficiently
generalized and modified might be considered as serious candidates to become
eventually “the standard models” (e.g. in the sense of Ref. [1]). This observation
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arises mainly due to the fact that the urn models constructed by means of simple
and transparent assumptions lead to the probability distributions which behave
quite often similarly (or even identically) to the experimental ones, [6} (and see,
e.g., Ref. [7] for comparison with quantum vs. classical distributions, Ref. [8] for
the estimate of hyperon structure functions and especially §5 of Ref. [9] for
photocount distributions as well as the part 3b of Ref. [10] for some results
concerning the quantum theory of laser), thereby suggesting the views that the
processes in the corresponding intermediate states obey similar (or identical) rules.
Moreover, it is not unusual to recognize that different ingenious and considerably
complicated models involve more or less clearly also the assumptions on which just
the urn models are built up. ]

Even if in this area of research it is expected that more sets of what might be
called the master equations will be formulated (and the connections with Marko-
vian — cf. especially part V-9 of Ref. [11] — as well as with non Markovian
processes might be studied), it should be emphasized that the urn models presented
until our days allow to derive quite often explicit expressions for different kinds of
probability distributions. It is the purpose of the present contribution to give in'an
explicit form the probability to observe (arbitrarily) given numbers of given sorts of
particles ; some details to that point can be found in the next Section. The limiting
cases of that probability are discussed in the III. Section ; especially the results are
derived there which can be interpreted in terms of several well-known asymptotic
theorems. The last part contains several conclusions concerning also the next
possible development in that region of research. .

H. FORMULATION AND SOLUTION OF THE PROBLEM

1. The most of the models trying to describe the reactions leading to particle
productions introduce some kind (or kinds) of intermediate state with some (say s)
sorts of particles (objects, constituents) therein and with some (say B,) particles of
the r-th sort (r=1, 2, ..., 5). In that intermediate state it is possible to introduce
the (atractive) forces acting on the particles of the r-th sort: they might be
characterized by the parameters b,, with 0<b, <1, [6]: the case of free particles
corresponds to b, = 1 while the case b, — 0 gives evidence on strong increase of the
attractive forces. .

Considering the production processes, one of the most important facts concern-
ing the corresponding intermediate state (or “urn”) is that the initial numbers of
particles change (say, with increasing energy or with time, etc.). Let us describe this
fact at least in the first approximation in such a way that if some (conveniently
interpreted) action is performed upon the particle of the f-th sort f=12,..,5)
then ¢, new particles of the r-th sort are created (or annihilated if the correspond-
ing ¢, are negative).
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The problem is to find the probability & that in N attempts (draws or steps in

which e.g. the energy is increased) the sequence of particles of the following sort
will be observed,

\.:\.N‘..J.\.IMA\.VI. AHV

O0<H=<N, while in the remaining N—-H attempts no particle at all will be
observed (the last possibility exists due to the introduction of the parameters b, ).
(All £’s in rel. (1) are equal to any natural number from 1 to s and some
(or all) of them are allowed to be equal: the last case leads to multiple production.)
The last fundamental assumption involved in the present note says that in the
intermediate state the processes run stochastically.

2. For a given sequence (1) we get the probability
R=R({f}n). ()

Let us denote the sum of the probabilities of type (2) obtained for all permutations

of the given sequence (1) as well as of all other admissible sequences together with
all possible repetitions as

-

(sum perm. ®),, 3)
(for a given H). The probability & is normalized in such a way that
. N

>, (sum perm. &), =1. 4
H=0

For instance, let us consider two sorts of constituents (s =2) andlet N = 2 ; then rel.
(4) has the following meaning,

H=1 H=2
— ) e—Ae—— e
RH=0)+[R(1) +RQ)+[R(1,1) +R(1,2) +R(2,1)+R(2,2)]=1.

3. If an attempt is performed (e.g. the energy increased in a given step) while

no particle is observed at all then, in the present approach, let c,, particles of the

r-th sort be created in the intermediate state. Therefore we take all parameters c,,

.?\E. =0, 1, 2, ..,5) as known from outer considerations. Moreover, let us
introduce the parameters Cp0 and b, as follows, .

Co0= Bl o (1 BV[Z'B. (1~ 1), (5a)
o=[Z'8,(1~ b))/, (5b)

where £, is a real, positive (nonvanishing) and finite (otherwise arbitrary) :E:con.

and s
=3

r=1

Conditions (5a, b) guarantee the fulfillment of the normalization (4) (cf. Ref. [6]).
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We assume that bo# 0, i.e. that at least one of the parameters b, is not equal to
unity.

4. With the procedure outlined essentially in Ref. [6] we obtain the probability
R in the following form

a) if H=0,

iy N /e
(e e 0

X' Cor ' eor

(rel. (6) gives the probability that in all N attempts no particle at all will be
observed);

b) if ISH<N -1,

H
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i=1
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c) if H=N

H B +.m Crito ™ Ctata
=] Tp = g (8)

o= M\Am-.*. Wh?‘lﬁ?.b

i=]1
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(rel. (8) gives the probability that in all attempts a particle will be observed and
namely in the sequence (1)).

IIl. ASYMPTOTICS

1. In the limit when all §, —  while all |¢, | <8, (i.e. we have the sea of every
individual sort of constituents, say quarks or other objects, distinguishable at those
energies) we obtain from rel. (7)

7 () o [ ). ©)

The r.h.s. of rel. (9) can be rewritten in the form of the (“modified”) binomial
distribution,

N, Z H N-H
n Amvw
where P+ Q =1,
P=1/(1+¢), Q=1/(1+¢7 (10)
and
mnsmc\ 11®8), suA:wu&amﬁ a1

If all B, approach infinity with the same speed, rel. (9) gives

R @v:w?..vé sms,i 1= (b)is] . (12)

i=1

Let the probability &, rel. (7) be interpreted as a (convenient) cross section. The
asymptotic expression (9) for the particle-particle scattering (say, pP+p - p+p)
will be equal to that expression for the antiparticle-particle scattering (say, p +p
— p+p) if we assume that (i) all 8, approach infinity with the same speed for
particles as well as for antiparticles (in other words, that the sea of different sorts of
constituents is equally dense), (ii) in the limit under consideration the forces acting
on constituents which form the particles, are the same as the forces acting on
constituents which form the antiparticles, (iii) the particles contain the same
number of (valence, ie. left after the limit B.— =) constituents as do the
antiparticles. All three assumptions are physically plausible. As far as they are
fulfilled the result can be interpreted as the Pomeranchuk theorem.
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2. Using the normalization condition (5b), the limit N — oo brings the r.hs. of
rel. (9) into the form

R—cexp [-N(Z'b8,)/2'8,] (13)
irowa
g lz&:i EG&L \ ﬁﬁi (- (588 ™. (14)

If our interest is not concentrated on the multiplicative factor in rel. (13), we put
¢ =1. Moreover, if

a) the sea is reached for all respective constituents with the same speed, rel. (13)
gives

R —>exp [-N(Z'b,)/s] (15)
where s is the number of sorts of constituents;

b) we do not introduce the normalization of the probability at the very

beginning, the asymptotic form (13) will not contain the expression X8, ; in this
case rel. (13) gives

R—exp [-NZ'b,8,]. (16)

3. The fact that in the first place the limit 8, — . was performed and then N — «

(i.e. N tends to infinity more slowly than B.), might be taken into account by the
relation

N~In¢

where ¢ is a new variable (say, with the standard physical meaning). In this case
rel. (15) gives

R - a7
while rel. (16) gives 4
Rs . (18)
or
R—t" (19)

=23 % pOp®
p=i

where the constituents are written down separately for every subgroup of particles

involved in the urn (i. e. a process is considered which involves s-sorts of particles,

each sort containing s, subgroups; a subgroup contains 8 constituents). Rel. (17)
allows to determine (at least in principle) the number of sorts of constituents from
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the asymptotic form (say, of the cross section) while rels. (16), (18), (19) represent
alternative forms of the dimensional counting rule (which was discussed in some
more detail in Ref. [12]).

IV. CONCLUSIONS

It is natural to expect that the results of the present note will be valid also in more
refined models as far as the corresponding assumptions will be somehow contained
(and not cancelled) there.

Several considerations involved in the present contribution allow extensions in
different ways. For instance the region of independent variable N can be divided by
thresholds into several sub-regions in which different sets of parameters s, 8., c,,
can be introduced. Moreover, it would be very convenient to include into those
considerations also the appropriate conservation laws.

The procedure leading to the probability & of the present paper can be extended
also to the case when the objects are observed which have not been contained in
the intermediate state under consideration at its early stages or which are glued
from several combinations of constituents.

Even if the parameters c,, (with 0 =0, 1, 2, ..., §) depend on the variable N or
even on the starting numbers B, (say, in such a way that the numbers of created
particles depend on the numbers of existing particles), the asymptotic relations of
the present form are obtained again as far as the condition lere | <B, is fulfilled (for
all indices) when the seas are arrived at (i.e. when B, - ).
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