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THE NUCLEAR EQUILIBRATION PROCESS —
THE MASTER EQUATION AND CLOSED-FORM
APPROACHES*

ELIZABETH HOLUB** R. CAPLAR®*, Zagreb

The general master equation is specified for the nuclear equilibration process and
applied to the case where specific particle-hole configurations of exciton states are
explicitly taken into account. In this way it is shown that 4, transition rates do not appear
in the usual master equation which contains transition and emission rates averaged over
the configurations. Different closed-form approximations and their mutual connections
are discussed within the pre-equilibrium exciton model. It is shown that under certain
conditions such approsimations yield fits to experimantal data of about the same quality
as more elaborate master-equation calculations.

SNEPHBIE PABHOBECHBIE NPOIECCHI - ONPEJENAWMEE
YPABHEHHE M [JPYIME BJIN3KHE [0 ®OPME NOAXoan!

Inst apepubix papHOBecHBIX 1IpOUECCOB HaAREHO ONpencsiomee ypasHeHue, KOTOpoe
TIPEMEHEHO [N Cllyvas, KOTAZ B SIBHOM BHze Y4TeHbI CrienuduyecKue KoHpHUrypaimu
HACTHIL ¥ ILIPOK BO3OYXAEHHBIX COCTORHMIA. Ha OCHOBE 3TOrG TI0KA32HO, YTO CKOPOCTH
Ao MEpexogor He BXOAST B O6bIHOE ONMpENENsIOIEe YPABHEHME, KOTOPOE CONEPXKHT
CKOPOCTH NEPEXOJIOB M HCITYCKAHMA, YCPEAHEHHbIEE TIO KoH(urypaussaM. O6CyxaaoTes
TaKXe pasHeie GIu3kye N0 GOPME NPUBIHKCHUS U UX B3AHMOCBA3b B pAMKaXx Ipefnpas-
HOBECHOM 3KCHTOHHOH MOLeiTH. Hokasano, uto npu onpenenekmnbix YCNOBHSX Taxue
NPHOAMKEHNA COrAACYIOTCS ¢ SKCNCPUMEHTANLHBIMK A2HHBIMH C TOH e camoil ToY-
HOCTBIO, KaK M GoNtee THIATENbHbIE BRIYHCIEHHS HA OCHOBE OIPEAEAOUIErO YpaBHEH!S,

L. INTRODUCTION

. The equilibration process after the initial projectile-target interaction in
a nucleus is commonly envisaged as proceeding via a chain of intermediate states
tharacterized by a number of excited particles and corresponding holes called
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together excitons. The master equation and different closed-from approaches useq
for the description of such a process follow from the general master-equation
approach upon the introduction of a number of assumptions based on the
properties of nuclear interaction.

The master equation for the nuclear equilibration process, widely used ip
literature | 1—7], contains transition and emission rates averaged over specific
particle-hole configurations. In this equation, A, transitions do not appear explicit-
ly. However, the general master equation for a system of equilibrating nucleons jn
which each specific particle-hole configuration is treated separately, contains ajj
transition rates, A., 1_ and A,. Starting from such a complete master equation, it js
possible to derive a master equation valid for averaged transition and emission
rates which do not contain terms with Ao. This will be done in Section IL

Integrating the master equation: over time, one obtains a system of algebraic
equations for a time T(n, E) spent by the system (composite nucleus) in an
n-exciton state at energy E. From these equations it is possible to obtain
a closed-form solution for T(n, E) by the iterative method. This point will be
discussed in Section III. Application of different approximations for transition and
emission rates appearing at T(n, E) leads to different approximations for T(n, E).
The derivation of these closed-form approximate solutins and the conditions for
their applicability will be discussed in Section IV. _

Il. THE MASTER EQUATION FOR SPECIFIC PARTICLE-HOLE
CONFIGURATIONS

A specific nuclear configuration y of a given exciton state is determined by
a fixed distribution of particles and holes. The probability of finding a system in
such a spedific exciton state (n,y) at a time ¢ is denoted by P(n, y,t). The
transition rates (transition probability per unit time) from the state (n, v) to a state
(n', v") are denoted by Aso(n, v, v') (n'=n + 2, or n). The total emission rate
from the (n, v) state is given by

€pmax
W(n,7)=3 \ Wa(nes, v, &) de, )

where f# denotes various emitted particles.
The master equation describing the equilibration of such a system can be written
as follows (see Fig. 1):

%cw\, H_ ﬁ&uﬁw? $+ 4 Tiﬂﬁ ﬁA cr & ﬁimw Y, &- + A%owﬁﬁ :MNNV
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where

“%AF Y, 1)
dt

WH = M\f? 22,7 7)P(n*2,y',t)-P(n, v, 1) M Ae(n,y, ¥")
(2a)

(T =S hotn v 1) Pn, v, 0 Pl .1 Skl v v) ()

and

(T = Py, Wi, ). (20)
The four term in eq. (2) represent transitions with exciton number change (,,+*“
and “—"), no exciton-number change (“0’) and the emission of particles (*‘c”),
respectively. It is understood that the probability P(n, vy, t), the transition rates
Aso(n,v,y') and the emission rates W.(n, v) are functions of the excitation
energy E of the nucleus; hence, for the time being, the energy is not written
explicitly,

The summation of transition rates over final configurations leads to the
quantities 1, o(n, y),

PH.QARu g\v“ M NH‘OA\r Y> v\\v Auv
o Y

These relations are applied to egs. (2a) and (2b).

The total probability of finding a system (at an excitation energy E) in an
n-exciton state at a time ¢ can be defined as a sum of probabilities of finding it in
any of its allowed particle-hole configurations, i. e.

P(n,t)=3 P(n,y,t). : 4)

We may now proceed to the summation of eq. (2) over initial configurations.
A general statistical assumption for the preequilibrium exciton model is that every
partition of energy for a given exciton number occures with equal a priori
probability during the equilibration process. Having this in mind, we may write the
specific probability P(n, v, t) as independent of a given configuration Y, ie.

P(n,y, t)y=P(n,1). %)
Furthemore,

2 P(n,y,0)=N, P(n,t)=P(n, 1), (6)

where N, is the number of n-exciton configurations of a given type y.
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The average values of transition and emission rates are given by

M Aeoln, ¥) P(n,y, 1)

=Aeoln, 1) (7a)
2 P(n,v,0)

2 Wln, v) P(n, y.1)

=W.(n, t). (7b)
> P(n,y,1)

These quantities apper as time-dependent. However, if we use the assumption of
a priori equal probabilities for every energy partition (specific configuration) for
a given exciton state (eq. 6), inherent to the exciton model, the relations (7a) and
(7b) become

P(n,t) M Aroln, v) M Aeoln, y)

N P(n, 1) N, heoln) (8a)

P(n, 1) M Woln,y) D W.(n, Y)

N,P(n,0) N, W) (8b)

It follows from egs. (8a) and (8b) that the average values of transition and emission
rates are time-independent.
From eqs. (7) and (8) the following relations can be obtained :

M NH.QASu .v\v wﬂsﬁ« v\u Hv ”NH.CA=V muA:u Nv Aomv

2 We(n, ¥) P(n, v, )= W.(n) P(n, 1). (9b)
When the summation over initial configurations in eq. (2) is performed using
relations (3), eq. (2) takes the form .
%H 2 AAn=2,y) Pn=2,7,0+Y 2.(n+2,y") P(n+2,y' )+
+ 2hon, ¥') P(n, v', )= 3 Aoln, ¥) P(n, v, 1) —

=2 Adn,Y) P(n, v, 0)= S A(n, y) P(n, Y. )= 2 Win,y) P(n, y, 1).

(10)
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Using relations (9a) and (9b) in eq. (10) one obtains the wellknown expression for
the master equation:

dP(n, E, 1)
dt

=An=2,E)P(n-2,E,()+A(n+2,E) P(n+2, E, 1)~

~[A(n, E)+A_(n,E)+ W.(n, E)] P(n, E, t). (11)

Egs. (10) and (11) differ in that in the latter the transition and emission rates are
averaged over all allowed particle-hole configurations y. Consequently, the terms
with A¢(n, E) have cancelled. The energy dependence E is written explicitly.

The procedure used in this paper differs somewhat from that used in ref. [6]. Our
aproach is based on the assumption that every partition of energy is equally
probable, which leads directly to the independence of P(n, vy, t)on the configura-
tions v. In ref. [6] it is assumed that all transition and emission rates summed over
final configurations are independent of initial configurations, i.e.

As(n, v)=Ae(n)
Wol(n, v)=W.(n).

(12)

In our approach the additional assumption (12) is superfluous.

IIl. THE MASTER EQUATION AND CLOSED-FORM
EXPRESSIONS FOR T(n, E )

The master equation (1 1) has been widely used to bescribe nuclear reactions, as
it gives both pre-equilibrium and equilibrium components of the reaction Cross
section. A coupled system of master equations can be solved by numerical methods
[2—5, 8], or transformed into a linear algebraic system for time- integrated
occupation probabilities [7]. Thi time-integrated occupation probabilities T(n, E)
determine the time spent by the composite system in an n-exciton state :

:vau\ P(n,E, ) dt. (13)
(¢]
The time T(n, E) should be distiguished from the mean lifetime t(n, E) of an
n-exciton state defined as
ﬂAz,mvH§+A=,mv+»A=,mv+ W.(n, E)]™. (14)

Within certain approximations, closed-from expressions for the time T(n, E)
can be obtained in two ways. The master equation (11) can be integrated over time,
From this equation, a closed form expression for T(n, E) can be obtained using the
iterative method. This method was suggested in ref. [7]. The same result for
T(n, E) can also be obtained by calculating the depletion of states due to 4. and
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W. transitions from each exciton state in a chain. This procedure was suggested in
ref. [9]. We shall briefly outline both approaches.
Let us start with the method described in ref. [7]. Defining the initial excition
distribution as D(n), the boundary condition for the tine ¢ =0 is
P(n, E, 0)=D(n), (15)
and for the time t— o

lim P(n, E, 1)=0. (16)

fw

Integrating the master equation (11) over time and applying the conditions (15)
and (16), we obtain the time-integrated master equation

1

~D(n)=T(n~2,E)A.(n-2, E)+T(n+2,E)A_(n+2, E)~T(n, E) -
(17)
The solution of eq. (17) in the zeroth approximation is
n—2
T%n, E)=1(n, E) ﬁ I 4G, E) <, mL n>n (18a)
aic3
and for n=n,,
T %n,o, E) = T(n,, E). (18b)

The above approximate solution is obtained assuming that D(n)=4.,,, and
A(n+2,E)<A,(n-2,E )- The latter condition is satisfied for exciton states with
a low exciton number (n not much different from n,).

The complete closed-from expression for the time T(n, E) spent by the nucleus
In an n-exciton state is obtained using the iterative procedure from the time-integ-
rated master equation (17):

T%(n, E)=t(n, E) ﬁ T A B oG, mL .

i=ngAi=2
A1+24.(n, E) t(n, E) A_(n +2, E)1(n+2, E)]+t(n, E) ,,. (19)

As already mentioned, the same result was obtained in ref. [9] using a different
approach. The authors of ref. [9] start from the mean lifetime of an n-exciton state
and calculated the depletion of states due to emissions and A_ transitions from all
states preceding a given exciton state. The correction factor to the mean lifetime
due to such effects can be expressed as

n—2

t(n, E) ﬁ T 16 E) mL. (20a)

i=ngAi=+2
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An additional correction factor is obtained when considering the A.(r, E) transi-
tion which forms the (n + 2)-exciton state. From this state, the A (n+2, E)
transition leads back to the n-exciton state and acts as a feeding term, Therefore,
the complete expression is

T(n, E)=1(n, E) d,, + t(n, E) ﬁ Tl 4.6, E) <G, ET

i=ng
Ai=+2

+:Fm% 1 4. E) %,mVTAiNVE w(n+2, E)=

i=ng+2
Ai=+2

= t(n, E) ﬁ Tl 4.G.E) G, mL [1+4.(n, E) t(n, E) .

i=ng+2
Ai=+2

A (n+2,E)t(n +2, E)]+t(n, E) §,.,, (20b)

which is identical with (19). In expression (20b), A_ transitions from the states with
an exciton number higher than (n +2) are neglected.

If we use eq. (19), the closed-form expression for the differential pre-equilibrium
cross section becomes

%?.Wm,iuq%,s S Wi(n, E, &) T(n, E). @1)
B n=ng
An=+2

The simple physical meaning of the above expression that the emission from an
n-exciton state is proportional to the emission rate multiplied by the time the
system spends in this particular state up to the moment the equilibrium is reached.

IV. CLOSED-FORM APPROXIMATE EXPRESSIONS FOR T(n, E)

The above described closed-form expression for T(n, E) (eqs. 19 and 20b)
obtained from the time-integrated master equation is also an approximation of the
exact solution of the master equation. Besides this solution there are several other
approximations for T(n, E) used in literature. These are based on specific
assumptions on the absolute values of emission and transition rates and their
respective relations. These approximations have been successfully used in analysing
experimental data. We shall now (1) discuss these approximations in more detail
and (2) show that they are in satisfactory agreement with experimental data under
certain conditions.

(1a) An approximate solution could be obtained assuming that both 1_(n, E)
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and W.(n, E) could be neglected with respect to the dominant A.(n,E) transitions,

Then expression (19) takes the form

T(n, E)=[A.(n, E)]™". (22)

Such a form was used at an carly stage of development of the exciton model [1, 10].
_This approximation is valid for the very first exciton states (n close to ny).

.y}

Fig. 1. A schematic presentation of allowed tran-|
sitions within exciton states if specific particle -
hole configurations are explicitly considered.

(1b) Another approximate expression for the time T(n, E) is obtained if only
the A_(n, E) transition is neglected. Then, eq. (19) takes the form

1 o W.(i,E)

Lo B W B L [ e wEB) @
This expression has been widely used in the exciton model as formulated in ref.
[11]. An expression of the same form has also been used in the hybrid model [12],
but with A, being defined in another way. In ref. [12], A, is obtained from the mean
free path of nucleons in nuclear matter, is independent of the exciton number and
depends on the energy of the emitted particles. In ref. [1 1], A, is the decay rate of
an n-exciton configuration obtained as average values over the allowed energies
and configurations of particle and hole collision probabilities, and depends on the
excitation energy of the system,

The approximation (23) is valid until A_ and A, transitions become comparable,

T(n,E)=

i.e. until n reaches n. However, since the emission probability decreases rapidly
with increasing n, this approximation still dexcribes preequilibrium emission with

sufficient accuracy even for n close to n.

(1c) The third possibility is to take for T(n, E) the zero-order approximation
(182 and 18b) obtained from the time integrated master equation (17). In this
approximation, t(n, E) is treated exactly, but the feeding term due to A(n+2,E)
transitions is neglected. We use this approximate close-form expressions to analyse
(n, 2n) excitation functions in the incoming energy E, = E hespora(nt, 211) up to
24 MeV for a number of nuclej from A =45 to A =209 [13].

In order to verify the conditions for the applicability of the above three
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approximate closed-form expressions for T(n, E),we compare the following
quantities for a chosen nucleus at a given excitation energy: (i) absolute values of

+» A~ and W, transition and emission rates ; (ii) ratios between these transition and
emission rates; (iii) values for T(n, E) obtained from various approximate
expressions, and (iv) spectra of primary neutrons emitted due to the preequilibrium
mechanism, calculated using various expressions for T(n, E).

0— R S
m "Ta" E=30Mev |
ao_r L_
m !
0" =
02} >

I |

i
TRANSITION AND EMISSION RATES (x10°%sec’)

3 7 W5 19 23 273

Fig. 2. Transition and emission rates as functions of the exciton number 1 for a system n +'*'Ta —
"*2Ta* at the excitation energy E =30 MeV.

As a test nucelus we have chosen '®2Ta excited to an energy of 30 MeV. Fig. 2
shows the values obtained for Ai(n, E), A_(n, E) and W.(n, E) for this nucleus.
The transition rates 1, and 4_ and the emission rate W, (n, E ) have been calculated
as described in ref. [13], with the value of the parameter K =700 MeV>, It can
be seen from Fig. 2 that the A, transition is dominant along all exciton states from
n=nyto n. The A_ trapsition can be neglected, especially at the beginning of the
excition chain, while W, although a decreasing function of n, cannot be neglected.

Fig. 3 represents the ratios A/(A-, W.(n)/W,(n,) and A./W,. The ratio 4,/A_

is a very rapidly decreasing function, approaching unity at n = n; it is thus possible
to neglect A_ transitions and use the appropriate closed-form expression
for T(n, E) (eqs. 23 and 18). Another condition for the applicability of the same
approximate closed-form expression is that W,(n)/ W.(n,) should also be a de-
Creasing function of n. This means that the bulk of the emitted particles should be
emitted during the first stages of the equilibration process. Since in this case the
emission from the states around n ~ can be neglected, the approximation
which consists in neglecting A_ can be used even when this transition rate is
comparable with 4,.

Fig. 4 shows a comparison between 7(n, E) and T(n, E) obtained with different
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Fig. 3. Ratios A,(n, E)/%_(n, E), An, E)/

/We(n, E) and W,(n, E)/W_(n,, E) for a system

n+'""'Ta—""Ta* at the excitation energy E =
30 MeV.
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Fig. 4. Mean lifetimes and the times spent by the

composite system n + "*'Ta— "*Ta* a¢ the excita-

tion energy E = 30 MeV. Symbols: z(n, E): eq.

(14); t(n, E); A #0: eq. (24); T(n, E), MEA :

eq. (19); T(n, E), MEA™: eq. (18); T(n,E),
MEA, A, #0: ref. [9].

approximate closed-form expressions. It can be seen that the zeroth approximation
for T(n, E)(eq. 18) agrees very well with the value T(n, E ) obtained by the
iterative procedure from the time-integrated master equation. In ref. [9], the same
approximate expression for T'(n, E ) (eq. 19) was used, but the mean lifetime of an

n-exciton state was defined as

t(n, E)=[A.(n, E)+Ai_(n, E)+A(n, E)+ W.(n, E)]™". (24)

We have shown in Section II that the terms with A, transitions should not appear in
the master equation (11). In this respect Fig. 4 also shows the result for 7(n, E)
and T(n, E) obtained in ref. [9]. The value of T(n, E ) from this reference differs
markedly from the value of T(n, E)calculated from eq. (19). As the emission cross
section is given by eq. (21), it is clear that the results of ref. [9] should be different
from those obtained by using eq. (19). Let us note again that the extension of
master equations to include A, transitions as was done by Wu and Chan g [9] is not
correct. This point was already criticized by Bétak and Dobes [14].

Figs. 5 and 6 show the calculated spectra of primary neutrons due to the
pre-equilibrium mechanism for 'Ta (excitation E = 30 MeV) and **Mn (excita-
tion E =25 MeV). The Spectra were calculated using the closed-from expression
(21) with different approximate expression for T(n, E). In **Ta (Fig. 5), the
closed-form approximate expression for T(n, E) (eq. 19) obtained from the
time-integrated master equation (MEA) and its zeroth approximation (eq. 18) give
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S0 |-
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5 ~~— MEA Xp%0
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Fig. 6. Pre-equilibrium spectrum of primary neut-
rons (eq. 21) from **Mn* excited to 25 MeV. The
following approximate expressions are used for
T(n, E): MEA: eq. (19), MEA™: eq. (18) and
MEA, 4,# 0: from ref. {9].

Fig. 5. Pre-equilibrium spectrum of primary neut-

rons (eq. 21) from '**Ta* excited to 30 MeV. The

following approximate expressions are used for

T(n, E): MEA: eq. (19), MEA™: eq. (18) and
MEA, Ao+ 0: from ref. [9).

the same results for the preequilibrium component of primary neutrons. For **Mn
(Fig. 6), the results obtained using these two equations differ slightly at low
energies of primary neutrons. For both nuclei, the resuit obtained using the
expression for T(n, E) with the 4, transition (ref. [9]) differs from those obtained
using eq. (18) and (19).

From the analysis performed we may conclude that for excitation energies in the
region studied [13] (E = 15—30 MeV) and for a wide range of nuclei A =45-209
the zero-order approximation to the time T(n, E) (the time which the system
spends in an n-exciton state) (eq. 18) is a satisfactory approximate solution of the
time-integrated master equation. In this energy region it is possible to neglect
A_transitions completely (eq. 23) or partly (egs. 18 and 19).
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