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- FIRST-ORDER ESTIMATE OF THE SAHA EQUATION

| FOR A HELIUM PLASMA

RICHARD L. LIBOFF*, EDWIN J. DORCHAK Jr.*, Ithaca
BARUKH YAAKOBI**, Rochester

Closed forms for the ratios nun,/n.(q) and nin,/nq) are obtained for a high
temperature helium plasma; they include approximate expressions for electrostatic

! interaction. The analysis further assumes that ground state contributions dominate
partition function summations. In the above expressions, n, is the electron number
density, n, is the ion number density, n, is the alpha particle number density, and n,(g ) is

the number density of helium atoms excited to the q -quantum number state. These ratios

are found to be maximum at the quantum state g =~VR/k,T, where R is the Rydberg
constant, kp is Boltzmann’s constant and T is the temperature.

|
_ OIIEHKA IEPBOTO TOPSAKA A YPABHEHHSA CAXA,
* OIHMCBHIBAIMEIQO 'EXTMEBYI ILIA3MY

B paGoTe nonyueHs! GNN3KHE BbIPAKEHUS RSt OTHOLICHHH 1,1, /no(q) u nin,iny(q) B

ClyHac BBICOKOTEMNEPATYPHOMH TCAHEBOM IUTA3MbI, IPHYEM HCIONb30BAHBI IPHGIOKEH-

HBIC BLIDAXCHUA [ANs 3JEKTPOCTATHYECKOTO B3amMofieicTeus. [locnenyiouyst ananns
MI03BOJIAET CAENIATH BHIBOM, 4TO BKNAMLI OT OCHOBHBIX COCTOSHH BIHHIOT Ha CIOXECHHE
GyHKuuit pacnpenenenns. B yKasaHHbIX BbIWE BHIPAXEHHSX 7, — 3TO MIOTHOCTS

; JEKTPOHOB, M, — MIOTHOCTE HOHOB, N, — FUIOTHOCTh ambda HacCTHH H ny(q)
: — [UIOTHOCTL aTOMOB rejHsi, BO3GYXICHHBIX 0 COCTOAHHA C KBAHTOBLIM YHCIOM g .

Halineno, 470 3TH BbIpaXXeHNA JOCTHIAIOT MaKCHMYMa NIpH 3HaYeHUM q = VR/kpT, roe
! R — nocrositnas PuaGepra, kg - nocrosunas Boasumana u T — TeMIepaTypa.

L. INTRODUCTION

Recent attempts at producing an X-ray laser as well as the general study of
onizing and reacting plasma have stimulated anew the interest in the Saha
‘quation [1]. Early among such investigations is that of McWhirter and Hearn
2], which deals with a Hydrogen plasma and seeks to find the population densities
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of atoms in excited states as a function of time. The authors find that a quasi steady
state maintains for a given excited state when bound bound-transitions are far more
probable than transitions to and from the continuum. For such cases the Saha
equation becomes relevant. The numerical analysis reveals a population inversion
between the 3" and 4™ quantum states.

Recent experiments have exhibited a population inversion in an aluminium
plasma [3] during its free expansion and cooling between the n =3 and n =4
quantum levels corresponding to radiation at the wavelength 12.97 nm. The
plasma is produced by bombarding an aluminium surface with a 50 GW laser.
A theoretical study of this experiment is modeled after a Helium plasma [4], in
which the Saha equation plays an important role relevant to the high quantum
levels of the atom. In this note we consider the appropriate forms of this equation
relevant to a Helium plasma.

IL ANALYSIS

IIa. Energy states

Eigenenergies of the excited states of the helium atoms are oo=<n=mmi_<
obtained from the Heisenberg unsymmetric forms for the Hamiltonian {5},

H=Hg, +eH. = Ho, + €H)s,

where H, denotes the electrostatic perturbation component. In the unperturbed
Hamiltonian, Ho., electron no. 1 ‘sees’ the bare nucleus and electron no. 2 ‘sees’
a shielded nucleus. Assuming for the moment a nuclear charge of eZ, we have

Ho. = P1/2m, + P3/2m, + Ze*/r, + (Z — 1)e’/r,. 1)

In the excited states of Hg, one assumes that electron no. 1, which is closer to the
nucleus, remains in its' ground state. In Ho, the roles of electrons are reversed.

Eigenfunctions of H,, and Hy, are in the product form
Uoe = Wion(1) Wir(2)
@) ) @
oo = ¥ioo(2) Waim(1),

where WS denote hydrogenic wavefunctions corresponding to the nuclear charge
eZ. These states satisfy the equations

Hogttoo = Eguiga
Houttor = Eotios 3)
Eo= —4R(1+1/44).
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The reason that the value of the unperturbed ground state
mc.Q = |A.AH.NMV.”

is more positive than the canonical value [6] Eoc= — 8R, is due to the unsymmet-
ric form of the Hamiltonian (1) in which one electron is shielded. Thus Eog exceeds
Eic by 3R, which gives the ground state energy Eoc = —74.8 eV.

In these expressions R is the Rydberg constant, R =e’/2a;=13.6 eV, ao=

2 2 .

=n"/me”=0.0529 nm.

Returning to the representation (2), space-spin wavefunctions of the unper-
turbed Hamiltonian H,, + Hos appear as

uﬁgumw€9|=amxruv (4a)
_ﬁsnmw€e+=smzrwy | (4b)

The spin wavefunctions &, s are given by
@ﬂ&?éi#&éﬁé (5a)
$=a(l)a(2) (5b)
@umwscss:ﬁaxs: (5¢)
CI=BBR). (5d)

In these equations the spinors a and B satisfy the eigenvalue equations
% 3.,
M_QCVHMm a(l)
. h
m:QGVNMQAC
a2 3.2,
S =31p(1)

$.8(1)= IW.EC

etc. )

As it is well known, when the electrostatic interaction e*/|r; — r,| is brought into
play, energies corresponding to the triplet states lie lower than those of the singlet
states. It has been further established that less energy is required to ionize a Helium
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atom (from the ground state) than is required to raise both electrons to excited
levels. )

With these observations in mind we may conclude that excited states of Helium
are predominantly of the form given by the triplet states (4a). The corresponding
eigenenergy, with correction due to the electrostatic interaction written 4RA (q),
appears as ,

SRS 1

B . ﬁ&ulpi:qvimi&. (7

The calculated {5] value of 4RA = — 10.9 eV. The degeneracy of the eigenenergy
W(q) is 2% q° x 3, where the factor of 2 corresponds to the exchange r,22r,, the
factor of 3 stems from the degeneracy of the triplet state £s and the factor q° stems
from orbital angular momentum degeneracy.

IIb. Number- densities and the Saha equation

Consider the ionizing reaction

He(q)=He (b)) +e. (8)

The notation is such that ¢ and b denote the quantum number of excited states.

The equation of the reaction equilibrium [7] for the process (8) is
Ho = Wi + HUe 5 AWV

where u denotes the chemical potential. With 8=1/ksT, one obtains for the
fugacity z =e™
. Z0=2ZiZe . 3.8

The average value of an occupation number N(j) for the j™ state with the

degeneracy g, for any of the three species in (8), follows naturally from the ground
partition function [8]. One obtains

N(j) = zg; exp (— ). 1y

The energy & may be divided into kinetic and internal energy terms

2
&=gt W,. (12)
" Thus, (11) becomes
2
N;=zg; nxn~|ﬁ~u|%~+ S\..:. (13)

298

Let the reacting plasma be confined to the volume V. Then the number densities
are given by

N1 . 2g;exp (—pW;
nG)=w [ NG= gi npA BW;) (14)
Pi
where 27l is the effective de Broglie wavelength
27h’B
p=22E (15)
With (14) we obtain the three densities
2z,
n.= -Pl% Aﬁmwv
~BW, (&)
ib € 4
mp) =2 % (16b)
—BW,(q)
e 0Ty
aasvn{. (16¢)
The degeneracy g-factors, as obtained above, are given by
goa=6q°
e..,.u ey (17)

With n H,Mac.v denoting the average number density, one obtains from (16),

FW:..QVV s
no(q)  no@) 31 :

Here we have recalled (10) and have further set (1o/A;)’=1. Eq. (18) may be

M N T\ 2 Olz_s\_?vliaﬁv_
2 (b/q)

(18)

rewritten, with (7),

o = 2(b/q)* e " e* ,m_& a@-gzeaa)]
el &i - b i
(@) e (19)

N

With (5) this equation may be expressed in terms of the difference in ion energies

1, ion ion M H
S\z = S\v - «a\a = IA.N _.‘~v |A|Qul-. ANOV
There results, .
. 2 _—4fR _—fW, B4RA()
nn, WN@EV e e e

noq) 322 . 1)

299



The divergence in the summation over b in (19) may be attributed to the fact that
we have assumed particles in the plasma to be non-interacting. Collisions of ions
with electrons and atoms, as well as with other ions, would provide a cutoff in the
b-summation, thereby rendering it finite [9].

The largest term in the b-summation in (19) stems from the ion ground state
value, b =1. Assuming that this term represents the dominant contribution we
obtain the canonical form

-1
nn  2e ™

noq) 3Aq> (22)
where,
I, =4R T.IMMI\»SL (23)

represents the ionization energy of the Helium atom from the a.._ excited state, as
given by (4a) and for q =1 has the value

I,=54.4-29.9=24.5¢eV.

Iic. The doubly-ionized Helium plasma

At higher temperatures, the Helium ion loses its remaining electron through

reactions of the form
e+He'(b) = a+e+e, (25)

where a denotes an alpha particle. The density n.(b) is given by

—BW,_ (&)

EGT{. . (26)
With g. =1, we obtain
il N @
ni(s) ni(s) As’,
where I} is the ionization energy of the Helium ion in the s™ excited state,
=% (28)

of n;(s) in (27) is summed over s and we encounter a divergence which again may
be attributed to the absence of interactions in the analysis. Once more assuming
that the dominant contribution is contained in the ground ion-state, s = 1, term, we
obtain
n.n, e ™
ki F A 29)
n; A

e

300

This equation, together with (22) and the equation of charge neutrality
n.=n;+2n, (30)

may be employed to obtain equilibrium relations among the four species n. , n. , n; ,
no(q). For example, multiplication of (22) and (29) eliminates n; and yields

2 =8 +1)
AR i
where
Ii+I,=4R T +J >SL
This Saha equation is relevant to the process
He =2 a+2e. (32)
The corresponding fugacity equation is
Zo=2az:. 33)

Eq. (31) results, providing one assumes that the Helium atom is ionized first
through losing an electron in the state (6) and then through losing the remaining
electron in the ground state.

Division of (22) and (29) eliminates n. and gives
7¢I

3 (34)

nl
E_SV:,.I 3q

where

- 1 .
I,—I}=4R ﬁmu 1 >SL.

Electrostatic interaction

A tractable form for the electrostatic interaction term is obtained in the Bohr
limit {5] with q =1+ 1. It is given by

2
2q HV+3& (2q +3)

: 1
~A@ =g (14T -1

Substituting this form into (22) we obtain

o 2 exp—4fR ﬁ >SVH_
= s (35)
no(q) 3iq’
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Assuming |A (q)| <1, indicates that the ratio n.m/n, is maximum at the q-quantum
value

4 =VpR=

At this value one obtains

exp[—1+4G°A(3)]. (36)

nn _
A no VZ.»XI %

A sketch of the ratio n.ni/ne as a function of q is shown in Fig. 1. A similar
expression for the maximum value of the ratio n2n,/n, is obtained from (31) with q
replaced by 4.

n!nl/nn(q)

Fig. 1. Sketch of the ratio n.n/n,(q) vs inverse
square quantum number.

(BRY g’

I11. CONCLUSION

Various forms of the Saha equation have been obtained for a high temperature
helium plasma. In evaluating partition function summations it was assumed that the
dominant contribution is contained in the ground ion-state for the singly ionized
species. Closed forms for the ration n.n./no(q), and n’n./nq(q) including the effects
of electrostatic interaction were obtained as explicit. functions of the excitation
quantum number g of the neutral helium atom. These ratios were found to be
maximum at the quantum value ¢ = R/ksT. Equivalently one may say that at this
temperature a minimum number of atoms would be found in this quantum state.

. We note finally that the later conclusion does not infer that photons passing
through the plasma would suffer coherent amplification. As it is well known,
exponential growth of radiation occurs when the probability that a resonant photon
stimulates emission outweighs the probability that it is absorbed in the excitation of
the atom. For the two states E(q)>E(q") this gives the criterion {10, 11]

:?:V:AAJ 37)
9q 9o
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Typically [see (17)], g <q>, so that for the configurations considered (37) is never
satisfied.
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