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H->Zm~.Q-H.OOM—%~O~MZHm OF AMORPHOUS
SEMICONDUCTORS BY QUASICLASSICAL APPROXIM-
ATION
L THERMOELECTRIC POWER

STEFAN BARTA*, PETER DIESKA* DRAHOSLAV w>w>znow:. Bratislava

In the presented paper a possible method for the calculation of transport coefficients
of amorphous semiconductors is shown. The method employs the quasiclassical model of
the electronic energy spectrum with randomly shifted bands. Thermoelectric power is
analysed in detail. The results are confronted with experimental ones obtained with some
single as well as multicomponent amorphous semiconductors.

HOAYKIACCHYECKASR HHTEPTIPETA IIUA KO3®OHUIIHEHTOB
HNEPEHOCA B AMOP®OHBIX NOJYNIPOBOAHHKA X
L. Tepmosnektpuyeckas cuna.

B npennaraemmoit paGoTe NOKa3aH BO3MOXKHLII METON 117 BLIYHCTEHNA KO3dipHIH-
CHTOB mnepeHoca B amopdHbix nonynposontukax. Mcnonssyercs noAyKAaccuyeckas
MOJeNIL IHEPreTHYECKOro CMNEKTPAa 3NEKTPOHOB C Xa0THYECKH CMELICHHBIMH NONOCAMH.
Ipu atom TEPMOIJIEKTPHYECKAS CHIa AHANH3HPYETC noapobHO. Taxum o6pazom
nonyuenusie xoehduumenTn CPABHHBANUCE C IKCNICPUMEHTANILHBIMH NaHHBIMH nns
HCKOTOPBIX APOCTBIX M TaKXKe MYMBTHKOMIIOHEHTHBIX aMOPGHbIX HONYNPOBONHHUKOB.

L INTRODUCTION

It was shown that when calculating the density of states of an electron in
a random potential, under certain circumstances the first and higher quan-
tum-mechanical corrections can be neglected [1, 2]. This fact led to the elaboration
of the quasiclassical model of randomly shifted bands [3]. The notions, notation,
and illustration of the model are given in Fig. 1. The shift of energy band by a value
of n&, denoted in the figure by a shifted edge of the conduction (valence) band:
E. — E!, occurs with the probability
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The averaging over random realizations of shifts yields the mean density of states
G(E), Fig. 1. The numerical calculation of the illustrated mean density of states is
given in detail elsewhere [1, 2]. The parameter n (in Fig. 1 =0.1 eV), i.e. the
dispersion of the random potential, represents in the quasiclassical model the only
parameter characterizing the structural disorder. When calculating dc electrical
conductivity [3] it was shown that for chalcogenide glasses and amorphous Si and
Ge the values n € (0+-0.2 eV) are reasonable.
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Fig. 1. Schematical illustration of the shifted bands model. The random shift &n, realized with the

probability 1/V2x exp (- £%/2), is denoted by the shifted edge of the conduction (valence) band. The
mean density of states, G(E), is calculated forn=0.1ev.

IL. TRANSPORT EQUATIONS

First we point out the fact that in the introduced quasiclassical model all states of
an electron are delocalized, and their dynamics in external fields is like that of
a Bloch electron. This conclusion is a starting point for the derivation of transport
equations and transport coefficients.

The transport theory of.crystalline semiconductors (e.g. [4]) vields the following
relations for the vectors of current density and the thermal flux of electrons:
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(The symbols have the usual meaning).
The relations (2) and (3) are valid for fixed bands. The energy of an electron in
the conduction and the valence band, respectively, can be written as
1 (hk)?
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where E!=E, —nE and E;=E, —n& denote bands shift.
In the case of randomly shifted bands further averaging over the distribution
function (1) is to be done. Then the relations (2, 3) become
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A similar approach yields the following expressions for the vectors of current
density and the thermal flux of holes :
v
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The relations (8, 9, 13, 14) are useful for the calculations of transport parameters in
the case of pure electrical phenomena (VE:=0, VT=0,B =0), thermoelectric
phenomena (B = 0), and galvanomagnetic phenomena. The electric conductivity
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was studied in our paper [3); in the following chapter we shall pay attention to
thermoelectric phenomena.

1. THERMOPOWER

A formula for thermopower (the Seebeck coefficient) can be obtained from the
expression for current density (8, 13) by putting B = 0. When adding equations (8)
and (13) under the condition i=i,+i,=0a simple manipulation yields

- Yitp = Yiin
NNJAANA:..V + Ahﬂ:wvv.

a (18)

We shall assume that the relation constant can be written as T =Ttoe’, for scattering
on charged centres 1, = Toe ™, for scattering on phonons 1 =15 "2,

An analytical treatment for thermopower in the whole temperature range is
impossible. In the limiting cases, i.e. both in regions of high and low temperatures,
the following asymptotic expressions can be found:

a) high temperature region (using the Boltzmann statistics)

, .
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04 d-12 Fig. 2. Temperature dependence of electric dc
conductivity and thermopower for n=0.06 €V in
the case of the dominance of holes. Extrapolating
. 16 a(1/T — 0) one can obtain various values for
fB/ko, which are dependent on the choice of the
0 > interval of temperature where the extrapolation
0 ! 2 S [k"] was performed.
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b) low temperature region

kor?
3ne -’

a= T.F (20)
The function F (see [1]) is not dependent upon T.

In the case of ordered systems, i.e. n =0, the expression (19) converts into the
well-known formula for crystalline semiconductors. For the low temperature range
a is proportional to T and, according to the third thermodynamic law, a
approaches to zero if T— 0. However, the expressions (19), 20) give only an
incomplete information about the temperature dependence of thermopower.
A more complete picture is provided by a numerical approach. v

The obtained results for the case of the dominance of holes with 1 =0.06 eV are
shown in Fig. 2. Here, the nm_oEmﬂoa,oona:omSQ values are given, too. At higher
temperatures the thermopower is nearly proportional to 1/T. Also the curve In ¢
versus 1/T at higher temperatures yields nearly a line with a slope corresponding to
the activation energy AE = E. — E, . At lower temperatures a moderate deviation
from the linear dependence can be seen. The experimental results obtained with
chalcogenide glasses are often interpreted by the one-carrier formula [5, 6]:
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where A is a constant, for which the value A =1 has often been proposed [7, 8].
Assuming the temperature dependence of Er—E, to be of the form E. —E,=
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Fig. 3. Temperature dependence of activation energies obtained from temperature dependences of o(T)
and a(T) (the case from Fig. 2).
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AE, — 3T, the value of B can be determined from thermopower measurements as it
is obvious from the following relation :
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Fig. 4. Temperature dependence a(T) calculated from (18) and a(T) (for the detailed calculation see

[3]) for various values of 1. In the case of scattering on charged centres the value m,/m, =0.3 was used.

For qualitative comparison the experimental data for different annealing states (a—f) of am. Ge samples
[10] are presented, too (at the bottom of the figure).
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The obtained curves (Fig. 2) are analysed with regard to the formula (22). The
activation energy AE, obtained as da/d(1/T) is shown in Fig. 3 together with the
activation energy for conductivity AE, =d(In 0)/d(1/T) as a function of tem-
perature. In the whole temperature region AE, > AE, is valid. This inequality is
well known from the experimental experience. By extrapolation of the dependence
a(1/T) for 1/T s 0 the value of B is obtained. As schematically shown in Fig. 2, the
determination of § is denoted on the choice of the temperature interval where the
extrapolation is made. This situation has an analogue in the experimental praxis,
where for various reasons (high material resistivity, melting point, glass transition
temperature) the temperature range where a can be measured is limited, so the
determination of the value by extrapolation may lead to false results.

In Fig. 4 (top) the results of calculation of thermopower and conductivity for
various values of the parameter n are given. The calculation was performed for
scattering on charged centres. The transport involves both electrons and holes, the
ratio between their effective mass being chosen as m,/m,=0.3. In Fig. 5 the
calculated temperature dependences of conductivity and thermopower with the
same parameters are shown for the case of scattering on phonons. The results
exhibit an approximately linear dependence of a(1/T) on 1/T at higher tempera-
tures and other character of the dependence at lower temperatures. Such a shape of
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Fig. 5. The calculated (expression (18)) temperature dependence of o(T) and « (T) for the same values
as in Fig. 4 in the case of scattering on phonons.

261



dependence is typical for amorphous Ge, GaSb, InSb [10] and amorphous Si [11,
12]. Fig. 6 involves further results for the case of a broader gap (AE = 0.4 ¢V). The
change of the character of a(T) in the low temperature region is explained by the
transport through localized states [13]. Let us note that within the frame of our
model the measurements ¢ (T) may be interpreted in the whole temperature range
without introducing any additional transport mechanism.
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Fig. 6. The calculated temperature dependence of o(T), a(T) for a narrow band semiconductor
(bottom of the figure —AE =04 €V) and for a wide band semiconductor (top — AE =2 eV).
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It is known that annealing strongly influences the measured dependences of both
a(T) and dc conductivity. Some typical experimental results are shown in Fig.
4 (bottom) [10]. It is reasonable to assume that annealing decreases the degree of
disorder (n —0). When comparing the experiment and calculation of Fig. 4 in this
light a good qualitative agreement is found. Concluding we note that the calcula-
tions were done always for one transport mechanism only(p=~1/20rp= 3/2).
However, the case of mixed scattering corresponds to physical reality, scattering on
phonons being dominant at higher temperatures and scattering on charged centres
being dominant at lower temperatures. A simultaneous account of both scattering
types would probably influence the position of the peak.

IIL. CONCLUSION

The simple model of nmnmoa_w shifted bands can describe not only the basic
features of dc conductivity [3] but also those of thermopower, namely a) experi-
mentally observed rﬁn:»:? AE, > AE, b) influence of annealing c) the basic
character of the a(T) dependence in a wide temperature range.

It should be noted, however, that an explanation of extremely high negative
values of (A —/ko) [5] and of thermopower anomalies at low temperatures (e.g.
in amorphous Ge [14] is beyond the scope of this simple model.
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