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METHOD OF EXPERIMENTAL STUDY
OF FLUCTUATIONS IN SEMICONDUCTORS

BOHUMIL KOKTAVY*, JOSEF $IKULA®*, Brmo

Methods of an experimental study of voltage or current fluctuations in semiconductors
consisting in the measurement of the voltage or current noise spectral density are
described. In the present paper we describe a measuring method for the experimental
evaluation of the noise current, which is applicable whenever the real fluctuation process
can be replaced by a stationary ergodic process. Some comments on the practical
measurement performance are given.

IKCHEPUMEHTATbHBIE METOBI HCCIAEAOBAHMSA OIYKTYALTHM
B IOJYNIPOBOJTHHUKAX

B pa6oTte omnucaHbl IKCIEPAMEHTATILHBIE METOABI HCCIEAOBaHUA (IyKTyaumit TOKa
H HaNpAXEHWs B MONYMPOBOSHUKAX, OCHOBAHHLIE HA WIMCPCHUM CHEKTPAILHON IAOT-
HOCTH WIyMa TOKa K Hanpsokenmus. IIpuBefcHHBIA MCTOX M3MEPEHHS, NO3BONSIOMIMI
IKCHEPHMEHTANBHO ONPEACIUTS LIYM TOKA, MPHMEHMM B TOM CIy49ae, KOTHa HPOIEce
ReACTBUTENbLHOM (PIYKTYalHy MOXHO 3aMEHHTE CTAIMOHAPHLIM 3PIORKIECKHM ITPOTIEC-
coM. KpaTko onmHChIBaiOTCA MPaKTHIECKHE H3IMEPEHUS.

I. INTRODUCTION

The spectral density and the correlation function of a stochastic process are
— apart from the probability density — the most important characteristics of the
process. It is known [1] that the information given by the spectral density or the
correlation function is equivalent. From the theoretical point of view it is not
substantial which of the mentioned characteristics is taken into account. From the
point of view of the experiment, however, this is not the case. The study of the
correlation function requires the amplification of the measured signal over a wide
range of frequencies, while in the case of spectral density being measured only
a narrow frequency band is amplified, the amplifier being tuned to the particular
frequency.

For a stationary random process the spectral density is determined in the
following way (see, for example [1]). If for an arbitrary realization x“’(r) of the
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.am:aoa process £(¢) the Fourier transform of the pertinent part of the realization
in the time interval (— T/2, + T/2) is

Z7(Gw)= {772 x(t) exp (- jor) dt, (1)
then the spectral density S(w) is defined as a statistical mean value
S(w)=lim m, *W _Nﬂc.Sv_Nw, 2)
T
where m, is the first moment.

The correlation function B(t) of the random process & (z) with a zero mean value
[m{E(t)} = 0] is defined as follows

B(r)=m.{§()E(t + 1)} 3)
and is related to the spectral density S(w) through the Fourier transformation
S(w)=2 \u B(7) exp (- jwt) dr, 4)
. s _ H = . +
(z =i .\.ls S(w) exp (jor) dw. )

The spectral density is very important when the properties of stochastic
processes, their sources and circuits with random sources are studied. The spectral
density of the current noise in semiconductor materials or components as a function
wm macroscopic parameters gives valuable information which may be of high
Importance when the sources of the noise are studied and localized (see, e.g.,
mmﬂwuv. Various conductivity mechanisms and other processes taking place in
semiconductors exhibit diverse characteristic noise spectra. When the current,
voltage, temperature, etc., are altered, the mechanisms or the relative weight of the
individual mechanisms in the studied system may change.

The relation between the spectral density and the current, voltage, etc., often
exhibits local extrema or other particular points, from which we can determine
some annom.nonmo parameters. The spectral density of the noise power of a given
component is a fundamental characteristic of its noise properties. It plays,
therefore, a very important role in applications of semiconductor ooEvonnza in
electric circuits, particularly in the amplification and measurements of extremely
low voltages.

iommo in semiconductor components is frequently caused by microscopic defects,
ir._nr in turn lead to an excess current in the P——N junctions. From the shape of the
noise spectra the technology of the material or component may be evaluated or
modified with respect to a minimum noise.
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II. THEORY OF DISPERSION AND SPECTRAL DENSITY MEASUREMENT

The choice of a suitable method for a given statistical characteristic measurement
depends on the nature of the process to be studied. The measurement method is
greatly simplified in the case of a stationary ergodic normal process. We confine
ourselves to the types of noise processes that can be considered stationary and
ergodic. The condition of stationarity of the noise process will be satisfied if the
macroscopic parameters of the system are constant within the measurement time. It
is necessary that the system be in a steady state, which means that we carry out the
measurement after the transients die out. Of high importance for the experimental
study are ergodic processes. A necessary and sufficient condition for a process to be
ergodic is that the following equation holds

lim %b B(t)dr =0, (6)

T
where B(t) is the correlation function of the process. Generally, condition (6) is

fulfilled for all the known types of noise, as lim B(7) =0 and B(0)= o’ is finite (o?

is a dispersion of the process).

In the case of transformation of stationary and ergodic processes by a physical
system the stationarity and ergodicity of the process at the output of the system are
to be checked. If the transformation is invariant in time, then the output process is
stationary and ergodic, too {3].

I1.1. Theory of the dispersion measurement

For the spectral density measurement the experimental determination of the
random process dispersion is of primary importance. For a stationary random
process £(t) with a zero mean value m,;{&(t)} =0 the dispersion o’ is defined as
follows .

QNHSLMQVJHhs x*w(x)dx, N

where w(x) is a one-dimensional probability density of the process &(¢). The
dispersion is related to the correlation function B () and the spectral density in the
following way: .

QNHESuWh S(0) do. (8)

If the process is ergodic, then E%(¢) is ergodic, too, and as an estimate of the
parameter o> we may choose
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The dispersion measurement is simplified in the case where E(¢) is a normal
. Pprocess, i.e., its one-dimensional probability density has the form

-1 _x
v e | ) 0o

In this case we can make use of the mean absolute value of the process §(t), i.e.,
mi{|E(t)|} [4]. To see this we write

(5@l = | _a_ﬁoi-wlm?u,\wp (1)

A non-linear, non-inertial transformation conserves the ergodicity of the process

so that |E(¢)| is ergodic as well. As an estimate of the parameter m.{|&(¢)|} we can
therefore take the following quantity

iuwh. IEC)| dt. (12

For the estimate of o* we get

o*= /\ww | "l dr. (13)

IL2. Theory of the spectral density measurement

ZO<.< we turn to the measuring method of the spectral density of a stationary
ergadic process. We feed this process into the input of a linear narrow-band system

with an impulse transient function h(t) and transfer function K (jw). The output
process will be

¢y = \ E(t - Dh(r) dr. 4)

Q.oaogzvu the process £(¢) will not be stationary and ergodic, as this transfor-
mation is not invariant in time. As far as we do not study the transient phenomena
and can limit the process £(f) within a sufficiently large time interval (— T, t),
then for at (T +t)—0 we can write )

£

t0=[_ E@he-r)ar. (15)

This transformation is invariant in time and the process ((t) is therefore
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a stationary and ergodic process. Its spectral density S¢(w) is related to the spectral
density Sz(w) of the input process as follows

Sc(@) =K (jo)|’Se(w). (16)

The correlation function of the process {(¢) is

B.()=4 [ 5@ exp (o) do == [ S:@)IKGo)* exp () do.
an

The dispersion o} is expressed by means of the spectral density by the relation

ot=B = [ S@IKGo) dwo=3 [ soKanrar

For a linear narrow-band system and a centre frequency f, we denote the transfer
function K, and the effective bandwidth Af.

At =5 [ KGO dr. (19)

If it is possible to consider the spectral density Se(f) constant within the frequency
range fo+ Af./2, then for the estimate (07)* of the dispersion of the process £ 3]
there holds

(0)* =St(fo)Af.K; (20)

and as an estimate of the spectral density S:(fo) we can take the quantity

% ﬁmS&
s1¢0 =T @

For a normal process {(¢) in the output of a narrow-band filter this estimate may be
expressed using (11) as follows: .
M T 2
|1+ tewnar]

SHO=3 KT o

It is seen that the spectral density can be determined from the mean absolute
value of the process &(t).
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. METHOD OF THE FLUCTUATION SPECTRAL
DENSITY MEASUREMENT

In the following we describe an apparatus for the measurement of the spectral
density of the current noise of a given semiconductor diode. The current fluctua-
tions make a random process 71(¢). The diode current is

(D)=L +n(), (23)

where I, is the mean value of the current. To measure the characteristics of 7 (t) we
transform the current fluctuations into a voltage &(t). For a real load impedance R,
in the diode circuit the noise voltage is proportional to the diode current

E(1)=Run(t). (24)

The spectral density Se(w) of the noise voltage is related to the noise current
spectral density by the equation

S¢(w)=R:S,(w). (25)

IIL1. Analysis of the input circuit

The spectral density measurement is carried out according to Fig. 1., where R, is
the load resistance, R, — the input resistance of the preamplifier, & (t) — a source
of the preamplifier random voltage reduced to the input, &, — v random voltage in
the input of an ideal amplifier.

IDEAL .
VOLTAGE | — AMPLIFIER
PREAMPLIFIER

Fig. 1.

First we determine the voltage &, in the input of an ideal amplifier. We assume
that the resistance R, and R, can be replaced by ideal noiseless resistors in parallel
to a thermal noise current source 7, (¢) and current generator 1, (). We assume
that the diode to be measured exhibits a thermal noise characterized by a current
generator 7,(¢) and excess current noise — na(t). The thermal noise of the diode is
generated in the differential resistance of the diode R,.
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The circuit equivalent to that in Fig. 1 is drawn in Fig. 2. The random process
then is

E.() =& () + Ro[na() + (1) + mu(6) + 1 (1)), (26)
where we denote
R, =(RoR.R,)/(RoR, + R,Ro+R.R,). (27)

Let us assume that the partial random processes are statistically independent.
Then for the dispersion of the process &,(¢) there holds

D{&, (1)} =D{&(1)} + RID (na(1)} + D{n.(6)} + (28)
+D {n(t)} + D {na(0)}].

If we replace the diode with a resistance Ro, then 74(¢) = 0. The input process of
the ideal amplifier is

EW)=E()+ Ry[n () + ne (1) + 1 (D], (29)
its dispersion is
D{E(1)} =D (&)} + RG[D{n(1)} + D {1 (£)} + D {nu (6)}]- (30)
The dispersion of the excess noise of the diode is found from (28) and (30) to be
D{na(6)} =[D{&.()) —D{EUN}V/R;. (31)
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Similarly, for the spectral density of the random process 7.(t) in the case of
a non-coherent stationary process we get

S{na(t)} = [S{E.()) — S{EUDIV/R;. (32)

This formula makes it possible to study the spectral density of the excess noise.

Fig. 2.

I1L.2. Stochastic characteristics analyser

An apparatus used for the spectral density measurement — the analyser — has
a block diagram represented in Figs. 3 and 4. If we measure the mean absolute
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value, we use the apparatus according to Fig. 3; if we wish to measure the mean
square value, we make use of the apparatus drawn in Fig. 4.

‘;.m arrangement of Fig. 3 is used whenever the one-dimensional probability
density of the process & (?) is normal, for then the process £(t) is normal, too. Even
when the process £(t) is not normal, we can also use this mnnmsmo_:o,:r as it is

known [5] that a narrow-band system normalizes any process. The higher the ratio’

of the time constant of a linear inertial system 1, to the correlation time i, the
better the approximation to normality. The correlation time 1, is

_s
t=—s \ IB(7)| dr, (33)

2 = i )
where B(r) and o° are the correlation function and the dispersion of the input
process, respectively.
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Fig. 3.
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Fig. 4.

ho.ﬂ us describe briefly the details of the apparatus drawn in Fig. 3. The A, system
consists of the measured sample and the power supplies. It must be carefully
protected from external electromagnetic fields.

As the A, through A4 systems we may use a Unipan selective nanovoltmeter, the
preamplifier of which has good noise properties and a high input impedance
absolute value. For example, the 233.7 preamplifier has a gain of 20 dB extending
over a frequency range from 1 Hz to 150 kHz, an input resistance of 100 MQ and
its noise factor is less than 3 dB at f > 300 Hz and the source resistance within 1 kQ
to 10 MQ. The 237 nanovoltmeter has a frequency range from 1 Hz to 100 kHz,

a sensitivity from 0.1 uV to 100 mV and a selectivity adjustable in three steps to 0,
25, and 40 dB per octave (Af, = kfo).
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The operation
ﬁ T
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0

is realized in a two way linear rectifier with an operational amplifier and the mean
value measuring instrument. The indicator is calibrated in rms values of a sine input

voltage. Then the mean value is

2 V2 (35)

and the ratio 2
ot /\M
— e s ™ w. .
= V3 U, 13U (36)

For the spectral density of the noise voltage we get

Mmqvnu.uu AN\IQQV 37

U, is the reading corresponding to the noise background, the factor k = Af./f is
determined from a standard signal measurement.

The A integrator circuit must have a sufficiently high time constant t, especially
at low frequencies, where the amplifier bandwidth is low (about 1 Hz). The
probable error of one measurement due to the fluctuations of the indicator pointer

is & = 1/V2Af.1.

If we require that the probable error § does not exceed 2 %, we find the
necessary time constant in the order of 1000 seconds.

Furthermore it is necessary to test the dynamic properties of the apparatus. For
the mentioned selective nanovoltmeter it has been found that its output current
follows the input voltage according to a linear law up to the full scale deflection
voltage multiplied by a factor of 3.5. The error due to the finite linear range in the
case of a normal process with a dispersion o” will be less than #, where

2

%.«owv—lwaﬂm_ak
== . ~1=0.7 % form =3.4. (39)

find X
‘“. knxﬁ_‘lmmggaa

IV. CONCLUSIONS

Unlike the substitution method, which has been frequently used in practice, the
method we describe in the present paper is a direct method of the spectral density
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measurement. This method is based upon the noise voltage measurement by means
of either a linear or a square detector. From the theory of measurement we have
derived the requirements for the amplifying system properties. A method of the
spectral density measurement by means of a real amplifier is discussed in detail.
The formulae for the spectral density calculation from the narrow-band-amplified
noise voltage are given.
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