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OPTICAL MAGNETOABSORPTION IN A MODEL
OF A DISORDERED SEMICONDUCTOR

EVA MAJERNIKOVA®, Bratislava

omnm SM m%moﬂrﬂao: edge, owing to the Landau shift of energy as well as the quantum
eliects, has been found. In some cases, the “flare-up” of the i i i
magnetic field may occyr, ’ Ppsm i In rsacing

ONOTHYECKAS MATHUTOABCOPEIIMA B MOIEIN
HEYNOPANOYEHHOTO HOJXYIMPOBOIHHKA

Hadineno maruuthoe BLIMODaXHBaHHE CIEKTPa B 06JacTH TDaHHUBLI NOIMIOMEHHUS,
CBA33aHHOE CO CABMrOM Jlanpay, a Takxe ¢ KBaHTOBLIMH 3tpextamu. B HekoTopsix

CIy4asx MoxeT HMETL MecTo «pa3ropajuBaHpe» CHEKTPA NPH YBEIHYCHUN MAarHUTHOTO
nong. i

L. INTRODUCTION

In our previous work [1] the magnetic freeze-out of the states in the tails of the
.o:oqm« of disordered semiconductors in strong magnetic fields was theoretically
5<nm.:.Wm8Q. Generally, the correlation of the density of states with the absorption
coefficient suggests to expect.this phenomenon in the optical magnetoabsorption
Spectra. Unfortunately, the optical magnetoabsorption in strongly doped and
amorphous semiconductors was not intensively studied experimentally. In doped
Ge 5@«@ was observed the “flare-up” of magnetoabsorption depending on the
magnetic field [2]. Dependence of the spectra on the concentration of impurities
was studied by Hasegawa and Nakamura [3] related to the “magnetic
freeze-out”, Theoretical investigation of the interband magnetoabsorption in
strongly doped semiconductors at low temperatures was performed by
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Djakonov, Efros and Mitchell [4]. They ascertained that with an increasing
magnetic field the absorption edge will be shifted to lower frequencies, become

sharper and approach that for the pure crystal.
Starting from the model described in [1] we shall calculate the coefficient of the

optical magnetoabsorption between the non-degenerated states of the randomly
undulated Landau bands taking into account the quantum effects due to the
random potential [5]. As we shall see, localization due to the essential one-dimens-
ionality of the electron in a random potential and in a strong magnetic field is

involved as well.

1. THE PROBABILITY OF TRANSITION IN A MAGNETIC
FIELD

The theory of a linear response results in the known formula for the coefficient of
optical magnetoabsorption ,
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where
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i(R?)=(G®(x,y,y",x",t; H)) = (2)
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is the Feynman path-integral representation of the averaged two-particle (elec-

e 1 ;
tron-hole) retarded Green function in the magnetic field A ()= 3 H X r and in the

random potential nU(r). Here we neglected the Coulomb correlation of the elec-
tron and the hole paths.
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The averaging in formula (2) over the Gaussian distribution functional P{ V(r)}
results in

AQG ?ﬁ. n h drjU(r.(z)) - Q?Aﬂv_wvvn 3)

exp “I%M\o \ﬁ dz dz’[W(r. () ~1(T')) + W(r, (T)—r(r')) ~

—2W(r () -, S,i.

.Qm:m:w of states. The consistency with the supposition of the negligible Coulomb
Interactions of the electron and the hole in the case lel ~L ~D, can be achieved
when the mixed electron-hole correlations due to the random potential W(r.(r)~
)) in (3) are also neglected. Indeed, the harmonic approximation of this

term would require a localization of the electron-hole pair in a small region within
L. Then, expression (2) results in
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where
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Next, we shall use the following transformations in (4):
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Then the Green functions in QC, turn out to be
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Here

E(z,q) Nm [q+q. cos (wT)—e; x q, sin (w7)]

is the vector of the local electric field in the coordinate system rotating with an
electron (or hole) in the magnetic field with the frequency w.

Owing to the symmetry of the Lagrangians in (6) and (7) it is convenient to
separate the Green functions related to the time development of the system under
consideration into two parts as follows:

Aﬂ.r | m u thu
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Similar expressions hold also for the respective hole propagators.

The canonical density matrix related to the electron motion in the plane L H can
be expressed with the aid of the solution to the Schrodinger equation with the
Hamiltonian of the forced harmonic oscilator

Hoa() =22 8.00) + 2 ol + @72 (u) + B, 1), 1) ©)
as follows

Re(Xei,¥ir,qus, B) = 2 V(e s G1) Winy(3es, Q) exp (—BEw)= (10)
Mmwe. .
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nyny=

Here
28
m.’
Dn,n, are the eigenfunctions of the two-dimensional harmonic oscilator and

2
hu=ir, Q2= W E(u,q..) HN@ (qi.ch(w.u) - e, x q.sh(w.u)).
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The normalization factor in Eq. (12) results from the normalization condition for
B=0

NNQN.C@C.. OvH&Aw~ I%_vmﬁwul.ﬂnwv

as follows
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Then the probability of transition can be expressed as
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Here Z, and Z, are partition sums of the electron and the hole in a one-dimens-

ional harmonic potential NMSnEMoxm,

_ I’Q 172 m o .
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2
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Z.i, Zny are two-dimensional partition sums of the electron and the hole in
a magnetic field and in a random potential, which have been calculated in [1]. The
values of mgy, and mgyy, are given in [6],

2 2
I mhf3 A W) 4 @3 v
GH W, + w2 1 Ilnwlnﬂ% Qc.w: -1 :

The first term in Eq. (11) represents “intraband” transitions between the
Landau oscillatory states [nin;) broadened by the random fields Qi:, Q.. The
second represents ““interband”’ transitions between the Stark levels in a one-dimen-
sional random potential.

L. THE COEFFICIENT OF MAGNETOABSORPTION

The coefficient of optical magnetoabsorption can be calculated approximately
for strong magnetic fields, wy > ws and providing m, =~m, .
For the “intraband transitions”, represented by the first term of Eq. (11), one
obtains the result .
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2 . 172
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The asymptotic behaviour of expression (12) for |E|>n’, E <0, determining the
shape of the absorption edges, results in

m%,Amev.&A%ﬂA:qul .

The evaluation of the second term in Eq. (11) representing the “interband

transitions” yields
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Here E and 7' are given by Eq. (13).

The absorption edge, given by the asymptotic behaviour of Eq. (17)for |[E|> 7',
yields

mu
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It is obvious that, similarly as for the optical absorption with H = 0, the neglection
of the electron-hole correlation W(r.(7) —r, (t")) in (3) results in the reproduction
of the density of states in the absorption coefficients (15) and (16), having the same
characteristic features as described in [1]:

1. The Landau shift of the absorption due to the magnetic oscillations of
electrons and holes in the plane 1H.

2. The magnetic field dependence of the effective damping constant '~ in (14)
and (16).

3. The quantum shift of the density of states decreasing with increasing H and
being nonzero also for H=0 [5].

This effect corresponds to the localization due to the effective one-

-dimensionality of the problem of the electron in a random potential owing to the
magnetic field.

Generally speaking, for strong magnetic fields there occurs the shift of the
density of states to higher energies caused by the three above mentioned effects, as
well as the contingent “flare-up” of the oscillatory behaviour of the magnetoab-
sorption at the increasing magnetic field if the condition for the dominancy of the
magnetic effects wy > ws has been fulfilled. This effect has been actually observed
in doped Ge [2] but, unforunately, the investigation of strongly doped semiconduc-
tors has not yet been performed. The dependence of the width of the impurity band
on the magnetic field and on the concentration of impurities has been investigated
by Hasegawa and Na kamura {3]. These investigations imply the existence of
the magnetic “freeze-out” in doped InSb.
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IV. EVALUATION OF THE ELECTRON DENSITY
OF STATES WHEN o, <oy

The condition for the dominancy of the magnetic effects over the effects of the
random fields [1]

wc An -1 - h
IAAHA/\MA=~+=~+: AH.»rIANsmv.uN:

Wy
can be fulfilled only for weak random potentials n<10""eV and for extremly
strong magnetic fields (10°—10° I'). For realistic values n ~10™" eV, L ~ 10" cm,
H~10"T the inverse condition wg > @y is more likely fulfilled.
The partition function (Z(8, H)) can be ¢xpressed as

(Z(B, wn)) = Aﬁmvubﬁeov“ exp AJNan W €xp (— BE unzns),

Wh. 2 ny, m2, n3=0
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The respective density of states results in
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n

Eq. (17) yields
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As expected, the Landau shift does not appear in this case. Only the magnetic field

dependent quantum shift of the Spectra occurs, represented by the last two terms in
the exponential of Eq. (18).
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