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CAN THE LEFT-HAND CUT CONTRIBUTION
OF THE SECOND RIEMANN SHEET TO THE PION
FORM FACTOR BEHAVIOUR BE NEGLECTED?

STANISLAV DUBNICKA*, DALIBOR KRUPA*, LUBOMIR MARTINOVIC**,
Bratislava

The influence of the left-hand cut on the second Riemann sheet on the pion form
factor behaviour is investigated by means of the Padé approximations. By using the
present experimental data in the region of the elastic threshold we came to the conclusion
that the left-hand cut on the second Riemann sheet is almost of no importance for the
explanation of the experimental behaviour of the pion form factor.

MOXHO JH NPEHEGPEYD BKJIAJIOM OT JEBOTI'O PA3PE3A
HA BTOPOM JHICTE PUMAHOBOH NOBEPXHOCTH B HIOBENEHME
MAOHHOTO ®OPMPAKTOPA?

C nomourpio Iage npubNKeHHH HCCEOBAHO BAMAHHE JAE€BOTO paspesa Ha BTOPOM
JIMCTE PMMAHOBOH TMOBEPXHOCTH Ha MOBEeHHue MuoHHOro ropMdaxropa. Ha ocose
HMCIIONB30BAHUS COBPEMEHHBIX SKCNECPUMEHTAJIBHBIX NAHHBIX AN OONACTH YHpyroro
Iopora ciejian BbIBOJ, YTO JIEBLIA Pa3pe3 Ha BTOPOM JIUCTE PUMAHOBOM NOBEPXHOCTH He
HMEeT MOYTH HMUKAKOTO 3HAYEHMS IS OOBICHEHMS IKCHEPUMEHTANBHOTO MOBEACHMA
nuonnoro dopmdaxTopa.

1. INTRODUCTION

There are many examples in particle physics in which the use of analytic
functions has proved to be very useful. One could mention the dispersion relations
[1], sum rules (see e.g. Ref. {2]), different bounds on the scattering amplitudes 3]
and form factors [4], the exploitation of analyticity in the cos # plane of binary
reactions for the extraction of the corresponding coupling constants {5}, etc.

The broad practical application of the analyticity in particle physics is caused by
the fact that the only singularities which appear in concrete cases are the isolated
poles and the branch points, which are rather simply manageable by standard
mathematical methods. Moreover, in various approximation schemes only the
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nearby singularities are important and the distant singularities can be ignored.
Then the question arises, which of the all singularities have to be considered as the
nearby ones and which as the distant ones. Unfortunately, there is no exact
criterion for such a choice and the distinction depends on the task under
consideration.

In the case of the electromagnetic pion form factor F, (¢) (¢ is a squared four
momentum transfer) there are no poles on the physical sheet and the analytic
properties of the F,(r) in the whole complex ¢ plane are restricted only to
a sequence of threshold branch points at t =4m2, 16m2, 4m%, 4mZ, ... on the
positive real axis, where m, , mx and my is the mass of the pion, kaon and nucleon,
respectively. The cuts associated with these branch points are chosen to extend to
+ « along the real axis.

As a consequence of the elastic unitarity and the reality condition the singularity
at t=4m} is a square root branch point. It generates two sheets of a Riemann
surface in the complex ¢ variable.

The singularities of the F,(¢) on the second Riemann sheet can be reached by the
analytic continuation of the F,(¢) by means of the elastic unitarity condition
through the elastic cut. They consist of the two complex conjugate ¢ meson poles,
the left-hand cut for — o <¢< 0 (this cut is a consequence of the presence of the
7w scattering amplitude in the unitarity condition) and the right-hand unitarity cut
as on the first sheet.

If the left-hand cut on the second Riemann sheet plays some important role at
all, then it contributes mainly to the behaviour of the pion form factor in the region
of the elastic threshold, to which it is near.

In the construction of F,(r), which possesses all the fundamental properties and
describes all the existing experimental data in space-like, as well as in time-like
regions simultaneously {6, 7}, the a priori assumption was used that the contribu-
tion of the left-hand cut on the second Riemann sheet was negligible. However, the
© meson parameters obtained are smaller than the values from the Particle Data
Group. In our opinion, one could expect an improvement of the situation if the
left-hand cut gave some non-negligible contribution to the pion form factor
behaviour in the region of the elastic threshold.

In this paper we investigate by using the Padé approximations to what extent Ew.

omission of the left-hand cut in Refs. [6, 7] was justified.

1. SOME ARGUMENTS IN FAVOUR OF THE METHOD CHOSEN

In Ref. [8], starting with the phase representation (units h = ¢ = m, = 1 are used)

FSMFSQG “%h ﬂwﬂ_%wu&.“ 1)
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and using the following energy dependence of the sz phase shift with a correct
threshold and resonant behaviour

3
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where qis the pion ¢.m. momentum, g, = “|@M||* and a is a constant, the
authors have found the following normalized pion form factor formula
(9 —4q1) (i+g:)(i+q2)(i+4s5)

F.(t)=P.(t) 4)

(g9 +4q2)(q +45)(q +4q.) (i-q)
with g¢: (i=1, ..., 4) being the roots of the numerator of the logarithm in (3).

If the pion is regarded as a quark-antiquark bound state, then by using the
dimensional counting [9, 10] one gets the following pion form factor asymptotic
behaviour

Fut)~, )

o~ | -

which automatically requires P.(t) in (4) to be exactly equal to one. Then the
expression (4) takes the form of the [1/3] Padé type approximation to the pion
form factor and its analyticity structure consists of two ¢ meson poles at ¢ = — g,
q = — g4, one pole at g = — q; and one zero at g = q., both situated on the negative
imaginary axis of the g plane, onto which the pion form factor left-hand cut of the
second Riemann sheet is mapped.

On the other hand, it is well known [11] that the poles and zeros of the Padé
approximations, which are constructed from the coefficients of the Taylor series
expansion, represent the singularities of the analytic function in consideration.

It is interesting to examine som simple examples. Consider for example the
continued fraction expansion [11] (this is always [N/N] or the [N ¥ 1/N] Padé

.1
approximant) for the function M_n (1+2)
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The [0/1] approximant has a pole at z = — 2, the [1/1] approximant a polé at
z= ~3/2 and a zero at z = — 2, etc. As the order increases, higher poles and Zeros
appear, which alternate on (— o, — 1) in order to represent the logarithmic cut.

In order to illustrate the same feature of the Padé approximants in case of the
square rot cuts, let us consider the function fQ)={4-7" Y21(7% ~ 9/4}, which has
two poles at z = +3/2, the right-hand cut for 2<z < + ® and the left-hand cut for
—®<z< —2. As the order of the diagonal Padé approximants increases, more
accurate positions of the poles z = +3/2 are obtained, while the other poles and
zeros alternate on the intervals (— o, —2), (2, + =) in order to represent the
corresponding cuts. The non-diagonal Padé approximants also reproduce the pole
positions quite accurately ; however, some of the zeros are placed symmetrically
around the cut.

These examples prompt us to understand the pole at g = — g and the zero at
q =q, of (4) as an effective approximation of the left-hand cut of the pion form
factor on the second Riemann sheet.

However, there is a question, to what extent the appearance of the pole at
9 = —qs and the zero at g = q, on the negative imaginary axis the reflection of the
actual behaviour of the pion form factor are at the region of the elastic threshold
and to what extent they are a consequence of a special choice of the energy
dependence of the zx phase shift (3), which by the way does not reproduce the
experimental data on 8;(¢) too accurately.

To solve this problem, we propose the following method. We start with the
Taylor series expansion around the elastic threshold in the q plane with all the
fundamental properties of the pion form factor. Then, by the minimalization
procedure, we find the optimal minimal number of terms, which describe the data
inside the circle of the convergence, from which all the possible Padé approximants
are constructed. The Padé approximant with the lowest value of x* will be
preferably chosen to give an information about the contribution of the pion form
factor left-hand cut on the second Riemann sheeet.

The proposed method will be the subject of the next section.

L. AN ANALYSIS OF THE PION FORM FACTOR DATA
IN THE REGION OF THE ELASTIC THRESHOLD

As we have mentioned in the introduction, one can prove the elastic threshold to
be a square root branch point. It generates two sheets of the Riemann surface. The
left-hand cut of the pion form factor is situated on the second sheet and the
experimental data at the region of the elastic threshold are the most nearby pion
form factor data, which could be affected by the existence of the cut.
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By using the conformal mapping (again units h=c=m, =1 are used)

uv )
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we map the two sheets of the Riemann surface in the ¢ variable onto the g plane
and the elastic cut disappears.

Then F.(t) in the g plane can be expanded around the elastic threshold into the
Taylor series

Fe(t) u._Mo a.q", 8)
the convergence radius of which is determined by the distance from the origin to
the first nearby singularity.

If we neglect the four pion cut (the zz phase shift analysis [12] reveals, that the
P-wave isovector inelasticity 11(¢) starts to be different from one almost at the c.m.
energy of 1 GeV), the convergence of (8) is extended nearly to the ¢ meson poles
and we may use 57 experimental points from the range of momenta
— 0.294 GeV*=<1</0.490 GeV* for the analysis.

In order to comply with the reality condition F *(t)= F(¢*) the even and the odd
coefficients of (8) have to be taken real and purely imaginary, respectively. With

———regard-to this the pion form factor may be written in the following form

F.(t)=2 b.(i)"q" )

n=0
with b, being real.
Then, imposing the threshold conditions [7]

2
ImF,(t)],~0=0: SImF. ) =0; E =0, (10)
w& q=0 QQ q=0

which are the consequence of the threshold behaviour of the nn phase shift
81(t)=aiq’ (a} is the nx scattering length), and imposing the elastic unitarity
condition, one gets

b,=0. | (11)

Finally, the normalization condition F.(0)=1 gives
bo=1-3bu(-1y. (12)
As a result one can write the following approximate parametrization
FSM_+M~ b.[(1)q" - (- 1)"] (13)
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consistent with the basic principles and suitable for the description of the pion form
factor data from the range of momenta — 0.294 GeV’ <1< 0.490 GeV~,
Further, by using the last-square method, the optimal degree L of the polyno-
mial (13) will be found, which subsequently is used for the construction of the
different Padé approximants. :
The results of fitting the aforementioned 57 experimental points by expression
(13) are summarized in Table 1.

Table 1
L x’ 1’ /ndf
3 70.7 1.29
4 63.7 1.18
5 54.1 1.02
6 51.0 0.98
7 51.0 1.00

We have chosen the fit with L =5 as the optimal one, because in the case of the
polynomial with L = 6 the generated errors of the coefficients are larger than the
coefficients themselves.

The values of the corresponding b, are as follows:

b,=—0.197860+0.016531 (14)
bs;= —0.038254 +0.003991
b.= 0.041677 £0.008659

“bs= 0.019305£0.004294

The [N/M] Padé approximant to the F,(t) will be constructed from the
approximated power series expansion

F.(t)=Bo+B.\q +B:q”+ B:q*+ B.q* + Bsq’ (15)
with Bo=1~b,+b;—bs+ bs (16)
B,=0
B,=—b,
Bi= —ib;
s"@a
Bs=ibs

represented as the ratio of two polynomials in g, Pv(q) and Qu({q) of degree N and
M, respectively (N+M=< L)

Fa(t) = Fo™ svm.m%. (17)
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The restriction N+M< 5 allows generally to construct 21 different Padé
approximants, each of which gives a different number of zeros and poles.

However, since the pion form factor is dominated by the ¢ meson, one can
reduce the 21 Pade approximants to 10 with the polynomials in the denominator of
at least the second degree.

The latter are compared with the experimental data from the range of the
momenta — 0.294 GeV’< t< 0.490 GeV® and always the corresponding value
of x” is calculated. The results are presented in Table 2, which reveals that the
[1/2] Padé approximant gives the best reproduction of the considered data. It
generates two complex conjugate ¢ meson poles at Req, = +(2.33+0.39),
Imq, =(—0.56%0.17) (to be compared with the Particle data [12] ¢ meson pole
position at g, = +2.59—i0.30) and one zero for qo= —i5.17. This zero might be
interpreted as the Padé approximant zero simulating the left-hand cut on the
second Riemann sheet. However, since the zero is rather too distant from the origin
and from the data region, one can conclude that the cut, which it simulates, is
almost of no importance for the pion form factor behaviour near the elastic
threshold, i.e. in the data region considered.

Essentially the same conclusion follows also from the Padé approximants with
slightly higher x*. The common feature of those Padé approximants is that the
generated poles and zeros are far away from the data region. An exception is the
[1/4] Padé approximant, which still has not a too bad value of x* and where on the
cut position the approximant generates the pole and the zero rather very close to

Table 2
Approximant X Positions of poles Positions of zeros
[0.2] 1359.12 +2.397
{0,3] 68.18 i5.998
+2.188-i0.413
[0,4] 97.69 14.000, —i8.664
+2.105-i0.305
[0,5] 84.22 +1.731+i2.138
—1i2.969
+1.832-i0.401
[1,2] 77.83 +2.332-i0.556 —i5.172
[1,3] 122.36 13.193
+2.149-i0.291 5 i5.274
[1,4] 77.97 15.260, —i1.198 —-il.210
+2.112-i0.42]1
[2,2] 79.05 +1.970-i0.390 +3.435-i1.306
[2.3] 75.81 —112.043 +2.771 -11.610
+1.939-i0.457
[3,2] 76.31 +1.929 —i0.449 i15.897
+2.811-i1.470
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the data region. If these two (the pole and the zero) were more distant from each
other it would give a rather strong indication of importance of the examined cut, in
contradiction to the conclusion drawn from the previous Padé approximants.
However, the pole and the zero are so close to each other that their influences in
the Padé approximant are mutually almost entirely canceled out and, again, one is
left with the conclusion that the cut on the second Riemann sheet is almost entirely
negligible. )

Another interesting feature of all the Padé approximants considered is the fact
that each of them feels the ¢ meson existence. The calculated positions are quite
close (within the error bars) to the position determined from the Particle data table.
This phenomenon is even more interesting if we take into account that the input
information consisted only of the data from the energy region far below the o
meson.

Moreover, the position of the © meson poles, calculated from the various Pade
approximants is remarkably stable, when changing the order of the approximants,

which gives a good reason to believe in the existence of such poles on the second
Riemann sheet.

IV. CONCLUSION

Using the fundamental properties of the pion form factor as well as the
regularization of the square root branch point at the elastic threshold by means of
the conformal mapping and the successive Taylor expansion around the elastic
threshold in the g plane, we have found an approximate parametrization suitable
for the description of the pion form factor data in the region of the elastic
threshold. By the least square method we have found the optimal minimal number
of terms of the corresponding series, from which all the possible Padé approximants
with the polynomials in the denominator of at least the second degree were
constructed. The [1/2] Padé approximant, which generates two complex conjugate
© meson poles and one zero on the negative imaginary axis, gives the best
reproduction of the data considered. As the zero is rather too far from the data
region, we conclude that the contribution of the left-hand cut on the second
Rieman sheet to the pion form factor behaviour is negligible. The same conclusion
can be drawn also from the other Padeé approximants in Table 2 with slightly higher
X

However, as our conclusion rests on the presently available data, which are
rather scarce and not very precise, a more accurate conclusion could be made only
if more numerous and more precise data, mainly above the elastic threshold, were
available.
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