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A METHOD TO DETERMINE THE DIFFERENCE
IN A™ AND A° POLE POSITIONS

JURAJ BOHACIK*, ANNA NOGOVA*, Bratislava

We n_.ovo.a.o 2 method for the determination of A**~A° pole parameters. The
method is free of the ambiguity due to pole-backgroud separation and takes into account
all available information about the partial wave amplitudes. The method is tested by two
model amplitudes with pole positions known beforehand. We present three different

approaches based on the same method and calculate the correspondin le shifts i
f
model amplitudes. P ® pole shits in

METOX ONPEAENEHHS PA3HOCTH MECTOIIOTOXEHMSA TIONIOCOB
PE3OHAHCOB A** H A°

Hpennaraerca meton mas ONPENCICHUS PA3HOCTH 1APAMETPOB, ONPEAENAIOLIHX 10~
JII0Ca pe3oHancoB A" u A°. IToT MeToR He CONEPXKUT HEONHO3IHAYHOCTH, CBA3ZAHHOMN
€ BBIIENICHHEM MOMIOCA OT (DOHA, M YYHTHIBAET BCIO RocTynHyio uapopMauuio o6
AMIUIMTYRAX MapLUMaIbLHBIX BOJH. Mertox TIPOBEPEH HA JBYX MOMCTBHBIX AMIUIATYHAX
C 3apaHee 3afjaHHbLIMH MONIOXKEHHAMH T10JTIOCOB. IpencrasneHs! Tpu pasnu4HbIX Mofxo-

[1a, OCHOBAHHBIX HA OOHOM H TOM Xe€ :nA,OH—.O. M pacCYHTaHbI COOTBETCTBYIOIHE CABHTH
T0JIIOCOB B MOJIENILHBIX aMILTKTYAAX.

L. INTRODUCTION

,Hd.o explanation of mass differences of particles belonging to the same isospin
multiplet is one of the most intricate questions in particle physics. The magnitude
and the sign of this electromagnetic mass difference are apparently given by the (at
present unknown) details of the internal structure of elementary particles.

@onnnoamm:nmn mass differences of stable particles are in most cases known
n.ES accurately (typical cases are mp—my, my+~—m.e and rmg+—mgo). The
situation is much worse in what concerns the electromagnetic mass differences of
resonances, like mu«+~ ma-, m,+ — m,o etc. Still, such cases may provide a valuable
n_co. to the understanding of the origin of electromagnetic mass differences.
Besides, in what concerns the resonance we have an additional piece of infor-
mation, namely the e.m. differences of widths, e.g. T'y++— 4o, etc.
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In order to determine the e.m. differences of resonance parameters one needs
both accurate data (in fact an accuracy better than 1% is required) and a reliable
method for determining the mass and the width of a resonance. The recent, very
accurate data of Carter et al. [1] have made it possible to determine separately P,
phase shifts in 7*p and 7 7p scattering and the errors of the data are so small that
the e.m. differences of width and masses of A** and A° can be determined. The
simplest way of obtaining the resonance parameters from the data is to fit the
amplitude near the point where the phase shift goes through 90° by the
Breit-Wigner formula. The results, however, depend on the specific parametriza-
tion and in this sense are model dependent. It is thus quite natural that different
authors obtain different results. In our opinion it is more advantageous to define
the resonance parameters in an unambiguous and model independent way by
relating the mass and the width directly to the position of the pole on the unphysical
Riemann sheet of the partial wave amplitude (p.w.a.). Such a definition of the
resonance parameters is at present becoming generally accepted. To determine the
resonance pole on the unphysical sheet is a nontrivial problem since it requires (a
tacit or explicit) analytic extrapolation of the p.w.a. onto the unphysical sheet.

A method which is being used for the determination of the mass differences of
A°, A*" resonances consists in fitting the data on each p.w.a. by an expression
which has correct analytic properties and a resonance pole on the unphysical sheet.
The fitting procedure then gives the parameters of the pole and thereby also the
mass and the width of the resonance. This method is undoubted by superior to
a simple fitting of the data by a BW formula. Still, even this method is not model
independent since the pole position depends to some extent on the parametrization
of the part of the p.w.a. which does not contain the pole. We shall refer to this
ambiguity as to the problem of pole analytic background separation.

The results by Ball and Vasan {2, 3] in determining the parameters of A** and
A° obtained by methods of this type are summarized in Table 1.

It should also be mentioned that such methods make use only of the information
about p.w.a. near the resonance and data about the p.w.a. at energies further away
are practically neglected.

The aim of this paper is to present a method for the determination of e.m.
differences of resonances which is free of the ambiguity due to the “pole”
— “analytic background’ separation and which takes into account the full available
information about the p.w.a. The method will be tested by two model amplitudes
with pole positions known beforehand. The two amplitudes may be considered as
qualitative models of P;; 77p and n~p partial wave amplitudes. We present three
different approaches based on the same method and calculate the corresponding
differences in pole positions. The results should indicate the optimal procedure for
calculating the A** — A° pole parameters. In part II of this paper the method is

briefly explained. In part III we construct the model amplitudes and describe three
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Table 1

Difference in real and imaginary parts of pole positions of A®and A ** resonances

a) Results which were obtained by using resonance formulae.
The third column gives the values I'/2.
b) SU(3) prediction

Author ReA°—ReA ** ImA°—1ImA **
[MeV] [MeV]
12) 0. 3.
[ 1. -26
31 0.5 : 3.1
[8}* 1.7+0.5 5.+1.
9 0. 3.

possible ways .om testing the reliability and accuracy of the method. The concluding
part IV contains a summary of the results and some comments.

II. METHOD AND MOTIVATION

.E.n. Bnﬂron.* is based on the statistical approach to the representation of data by
analytic functions. So far it has been applied for resonance poles on N and 77

Wm___d& waves. The procedure which has been used can be briefly described as
ollows.

Suppose H.:NH the analytic structure of the given partial wave amplitude f(s) in
the s-plane is known. Further, we know from experiment the values and errors of

s—plane

Fig. 1. The analyticity structure of the

L pion-nucleon p.w.a. on the second sheet. Resonance poles are not
indicated. a = (m,, —

M) b = (mp = (MY m )Y, ¢ = mi+2m2, d = (mp +m, )2, r = m2—m>.
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p-w.a. along the part of the physical cut and from the theory we have some
hypothesis about the behaviour of p.w.a. along the rest of the cuts. The same is true
for amplitude f"(s) on the second Riemann sheet. We use the conformal mapping
which brings the part of the second sheet which is exterior to the circle in Fig. 1 into
the unit disc. Naturally, the unit circle of this new plane (let us call it the z-plane)
will correspond to cuts in the s-plane.

Now we can say that we have a function f(z) which is analytic (except for
possible poles) inside a unit disc and we know its values and errors along the
boundary. We want to test whether such a function has some singularities or not.

If there is a pair of complex conjugate poles, (which would correspond to the
presence of a resonance) we can write

\HANv"%-‘sNWw*uT.MUo&:N:. AHV

Expanding the pole terms,
\nANvH M AQ»=|_+Q*>*:|JN|=+ M naN... ANV

n=1 n=0
Let us define
e H 11 n-1
L =s5e %\ @)z dz. 3)

If we know the function f(z) exactly, then for n =1 Q, =aA" '+ a*A*"*, Since
we know the values. f"(z) only with a given accuracy, we can say according to the
statistical approach that Q, are random distributed variables with mean values
ad" ™' + a*A* ' (For more details see e.g. [4, 5]). To make full use of the statistical
character of data we use instead of (3) a slightly modified formula
_1 ()

2rxif w(z)
where w(z) is a weight function which is analytic and free of zeros inside the unit
disc. It is constructed from errors in such a way that

wz)l~&; lzl=1 )

in points z; where the errors are given. In those parts of the circle where no data
exist, we require that |w(z)| is much higher than in the data region. The values of
w(z) in the parts of the boundary not covered by the data are interpreted as errors
of the hypothesis about the behaviour of f%(z) in these regions. Then Qu are
gaussian distributed with mean values the aA"~' + a*A*" " and with the dispersion
1 (where a =a/w(R)).

We construct the x% function

Q. z"'dz, 4)

N

ch”M _O.a|§:l_llﬁx*>.*=l_m~ AOV
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and cw.::iﬂ:.ﬁ:m (6) we find the parameters a,A. The method can be simply
generalized for the case of a function with m pairs of poles on the unphysical
Riemann sheet, i.e. the function

\SHMA %, Al TMUPN...

z2-A z —A%

Then, instead of (6) we minimize the expression
Xh=2

In our case, we have two p.w.a’s, Fi(z) and Fy(z), each of which is expected to have
the resonance pole corresponding to A** and A°, respectively.
The functions F,(z), Fy(z) are of the form:

N
1

Q. |ME.»..=-_ +§:1v_ . (7

Fi@) =3 42 S 0
N|>.~ N'N.m.n ) "

a, a¥ =
+ + ) aPz"
Z—RA, z—A% Mou "z

m.nvaH

The final aim is to find AL =1, —1, and Aq = a, — a, but in this paper we want first
to answer the following question: Is the above method sensitive enough to
determine AA ? In other words: if we construct from the data onx'p and 7 p the
functions F,(z) and Fy(z), how accurately can we determine AL =A,—1,? The
difference AA can be calculated in two ways: a) First we determine 4,, A, from the
data on F, and F, separately and get AA simply as A, — A, . This direct approach has
one serious drawback. When computing Q, s, we know F, «(z) and F,(z) only along
a part of the unit circle. On the remaining part we construct the amplitudes from
some hypothesis about p.w.a. High errors in this part of the circle may result in high
systematic errors of Q, coefficients and consequently high errors of A,, and A,.
Thus the final result AL =1, -2, may be influenced by large systematic errors. b)
We construct the analytic function, which has two pairs of resonance poles:

@=F,-F,. (8)

The functions F, and F, do not differ considerably on the left-hand cut. When we
approximate the function @ on the left-hand cut by zero, then the systematic error
of the Q, coefficients from ¢ will be much lower compared to the case a) and
therefore the result will be more reliable. On the other hand the data have to be
very accurate, since the absolute value of @ is small.

Instead of @(z) we can also use the function

Z—A 2=k, z—A¥ 7 A%
1-zAT1-2A%1-2A,1—-27A,’

(2)=@(z2) (8a)
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where the factors (z —A4)/(1 -A%*z) are the so-called Blaschke factors. The
function @(z) has no poles inside a unit disc. Therefore the corresponding Q,
coefficients are random variables with the mean value zero. We minimize the 12
which is of the form

N
=217,
1

where Q, are functions of A,, A,.

In the following parts we shall work only with the functions ¢(z) and ¢(z), since
the separate pole determination as explained in a) is burdened by the large
systematic error.

HI. EXAMPLE OF A p.w.a. WITH THE RESONANCE POLE

In order to test the method we have worked first with the model p.w.a.’s. These
amplitudes were contructed from the. Jost functions, which have analytic properties
similar (including the pair of complex conjugated poles) those of the p.w.a. on the
first and second Riemann sheets. Our aim is to decide, which of the three
approachos to be presented in this part is able to reproduce the poles correctly if
the “data” are calculated from the model p.w.a.

The model amplitude is of the form

Fis)=28=1 ©)
where
S(k)=f(k)/f(—k) (92)
f(k)=(k —a—ib)(k +a —ib) (9b)
with
k(s)=1/2(s — (mn +m,)*)'"?, (9¢)

my and m, are masses of the nucleon and the pion.
The phase in (9¢) are chosen so that for real s >(my+m,)*> we have k(s) real

positive and
k(s)= —k*(s*).

Then the amplitude defined by (9) is real analytic.
The function F'(s) has the right-hand cut ((my +m,)?, ).
The second sheet is reached via the elastic unitarity condition

F'(s)

1+ 2ikF'(s)’ (10)

F(s)=

197



Here the model amplitude has the pair of complex conjugated poles
S12=(my +m,)’ +4(a*>— b*) + 8iab. (11)

In the real situation we use two sets of data constructed from the f=-» and )
amplitudes. Therefore we use two model functions F, and F, with the pole
parameters A, and A, + AA corresponding to A** and A°®, respectively.

. The parameters a, b of the model amplitude F, were fixed at values correspond-
ing to the pole position

Vi1.2= (1211 +i50) MeV. (12)

For the function F, we have chosen five different values of pole position, which
differ from (12) by 1 to 5 MeV. We have tested three different approaches of
determining the relative shift of the pole position of the function ¢ =F, —F,.

1) Let A,=A,+ AA be the pole position of F,. The coefficients of the terms in
the singular part of the Laurent expansion of @ are

@, = (@ AT + @A) = [aa(h, + ALY + 13)
+as(Ar+AAT Y,

where a,, a, are the residues corresponding to 4, A,. Hence, for x% we get
N N
xnuME. —a,[*~3|Q. —2Re(AaA7™") = 2(n — 1) x (14)
1

XRe(a, A7 AL,

where Aa =a,—a, and Q, for F, is defined by (4). Nonlinear terms in Aa, A
were neglected. A,, a, are fixed and x? is minimized with respect to AA, Aa.

This method requires a high accuracy of computing the Q, coefficients since their
absolute value is small.

When calculating the real physical case, also the error of the input value (12)
must be taken into account.

2) First we calculate the Q, coefficients only for the function F,, which has one
pole at 4, given by Eq. (12). Minimizing x> we get the values A, and a, which are
used as an input in (7), where Q, correspond to the function ¢ given by (8).
Keeping A, and a, fixed, the A+ AL and g, + Aq are obtained by minimizing the
two-pole formula (7), Next we minimize (7) with respect to all four complex
parameters 4,, a,, A,, a, with initial valyes from the two preceding steeps. Since
the number of free parameters is rather high in this case, we are looking for the
Emumﬂ probable initial values to avoid the false local minima in the process of
minimization.

3) In the last approach the functions F, and @ were multiplied by the Blaschke
product — the factor which is equal to zero in points where the functions F; or ¢
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Table 2

Results of testing three different ways of calculating the A**—A° pole parameters. The first column
gives the difference in the pole positions of the model amplitudes F, and F,. The column 2 to 4 shows
how this pole difference is reproduced by the proposed methods.

The result The result ,ﬁ._._n result
« i of “Blaschke
Input values of “one-pole of “two-pole f .
s ¥ actor
fit fit
approach
[MeV] [MeV] [MeV] [MeV]
0. -0.011 0.001 0.0004
+1.i +0.964i - +0.999i +1.0000i
0. —0.043 0.001 0.0004
+2. +1.86i +1.998 +1.9997i
0. —0.098 0.001 0.0003
+3. +2.689 +2.997i +2.99951
0. —0.161 0.001 0.0003
+4. +3.454 +3.9957i +3.9992i
0. —0.243 0.001 0.0002
+5.i +4.159i +4.9944i +4.9989i
Pole pos. 1211. 1211.01 1211.00
of F, +50i +49.986i + 50.00i

have poles. (See Eq. (8a)). Thus instead of testing the hypothesis about the number
of poles we are testing the analyticity of the function inside a given domain.

The main advantage of this approach is that the only free parameters which enter
are the pole positions A,, A,. On the other hand the minimizing procedure is more
time consuming compared to the previous methods.

For the same reason as in the case 2) we first found the pole position 2, for the
function F, and then fixed the pole position 4, for the function @ at A,.

In the last step — the minimization with respect to both positions, we get the
final values A,, A,. After the same calculation had been repeated with a higher
accuracy, the output values 4,, A, started to deviate from the input pole position.
This effect is due to a false minimum in x°, which may be so close to the true
minimum, that it is difficult to avoid it even by choosing the appropriate starting
values. :

Much better results, i.e. convergence when accuracy had been increased, were
achieved with one pole fixed and the second pole determined by minimization. In
the next step the second pole was fixed and the first one was calculated with an
increased accuracy.

All the results concerning the model p.w.a. are shown in Table 2.

The next part of this paper contains some comments and concluding remarks.
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IV. DISCUSSION

There are a few points which should be stresses :

i) We need accurate data on the real axis in the region close to the poles. Other
parts of the cuts are less important but they are considerably suppressed by the
weight function. ’

ii) The first approach does not give satisfactory results since it reproduces the
input parameters A, and AA only approximately (See Table 2).

iii) The methods 2) and 3) are almost equivalent and rather promising. The
“Blaschke factor” method is not so influenced by the systematic error, since it
reproduces not only the difference in the pole position but also the values of the
input parameters. .

iv) In Table 2 we do not give the statistical error. The problem is that the errors
do not have a statistical character but depend also on the method. A more correct
way of calculating the statistical errors is developed in [6] and is based on the
following idea:

Suppose that the exp. data and errors are given. We generate randomly a few set
of “data” so that all of them lie in the corridor given by exp. errors. For each such
set we determine the parameters A, and AA. The final error is then calculated from
all the values A, and AL using the standard statistical procedure. In our model
example this method was not used. In conclusion we can say that the methods 2)
and 3) are able to reproduce the difference AL in the pole positions with
a sufficient accuracy.

Both approaches are model independent and do not use any special assumptions
about the background or the left-hand cuts,
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