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RELATIVISTIC GRAVITATION FROM MASSLESS
SYSTEMS OF SCALAR AND VECTOR FIELDS

AL F. DA F. TEIXEIRA*, Rio de Janeiro

Within the laws of Einstein’s gravitation theory, a massless system consisting of two
fields is discussed. One field is scalar, of long range, the other is vector field of short
range. Diffuse sources of these fields are admitted, to avoid singularities. A proportional-
ity between the sources is assumed. Both fields are minimally coupled to gravitation, and
contribute positive definitely to the time component of the energy momentum tensor.
A'class of static, spherically symmetric solutions of the equations is obtained, in the weak
field limit. The solutions are regular everywhere, stable, and can represent large or small
physical systems. The gravitational field presents a Schwarzschild-type asymptotic
behaviour. The radius of the structure is determined unambiguously. The dependence of
the energy on the various parameters characterizing the system is discussed in some
detail.

PEIATHBHUCTCKOE TOAE TATOTEHUS CHCTEMBI CKAIAPHOTO
N BEKTOPHOI'O IIOJEN C HYJEBOY MACCOM

B cratbe ofcyxnaercs Ha ocHOBe 3aKOHOB SUHMITEAHOBCKON TEOPHM TPaBHTAlUHH
CHCTEMA C HyNECBOW MacCOM, cocTofiNas U3 [BYX NOJEH, ONHO M3 KOTOPBIX SBIAETCH
RaNBHONCHCTBYIOUMM CKANAPHBIM MONEM, 3 BTOPOS KOPOTKOREHCTBYIOUMM BEKTOPHLIM
noseM. Bo M36exanue CHHIYIAPHOCTEM NONYHIEHBI HETOUHBIE HCTOYHUKH ITHX nonei.
TpennonaraeTca HATHYME MPONOPUHOHANLHOCTH MEeXQy HCTOYHUKaMH. Mexay o6oumu
TONAMH CYIIECTBYET MUHHMANbHAS CBA3h Yepe3 IPABUTALMIO, K 3TH MO BHOCKT BKJIag
B [OJIOXHTCILHO ONPENCNEHHYI0 BPEMEHHYIO COCTARNAIOMIYIO TEH30pa IHEPrum-
-AMynsca. B npepiene cna6oro monst nofydeH Kace CTaTHYECKHX M ceprieckn-cum-
METPHYHBIX peiiennit ypasienu#d. [Tonysennsie pemenns seane PeryaspHEL, CTAGHILHEL
H MOTYT MpEACTaBAATE GoNbIUKe M Masbie u3HYEcKHe cHcTeMbl. [pasuTammonsoe none
HMECT aCHMITOTHKY WIBAPUIIHILIOBCKOrO THHA. Pamuyc cicremst onpenensiercs ofsos-
Ha4HO. JI0BOIBHO MOAPOGHO OBCYKNAETCH 3aBUCHMOCTD JHEPIHH OT Pa3NMYHbIX Mapa-
METPOB, XapaKTEPH3YIOUMX CHCTEMY.

L —ZHIGECO.EGZ

It is an old belief that general relativity occupies a foremost place in the
description of elementary physical structures (Einstein and Rosen [1]). Nonsin-
gular solutions of field equations are particularly looked for, in which the energy
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momentum tensor depends on a minimum number of simple physical quantities,
Massive static systems are more usually studied, where the attractive effects of
self-gravitation are balanced by some kind of repulsive interaction. This interaction
may be in the form of pressure of electrostatic repulsion (Bonnor [2]): However,
the scalar interactions are also introduced to obtain equilibrium (Das [3];
Bekenstein [4], Wolk et al. [5], Teixeira et al. [6, 7]). Diffuse sources of fields
are commonly admitted, if one wants solutions without singularities.

In the present paper a simple structure is studied, not containing matter
explicitly. It consists of two fields, together with the corresponding diffuse sources,
One is a repulsive vector field of short range, the other is an attractive scalar field of
long range. Both fields contribute positive definitely to the time component of the
energy momentum tensor, and are minimally coupled to gravitation. In Sect. II, the
covariant equations governing the system are obtained from a Lagrangian density,
and the static, spherically symmetric equations are written in the weak field limit.
In Sect. I11, exact solutions for the vector and the scalar fields are obtained. In sec,
IV, expressions for the gravitational potentials are presented. Finally, three
independent parameters which characterize the system are discussed in Sec. V, and
the influence each of them exerts on the gravitational mass of the system is clearly
explained. It is also shown that the solutions obtained may serve as a basis to
describe large or small actual physical systems.

II. THE EQUATIONS

One starts from the lagrangian density

L= +Lo+ % ¢))

h&ouwA ~-g)?R, K=8nG/c*, ()
v=(=9)"[(Vie— V.,) Vo s+ K°V,V, ] g — 81"V, 3)
K% =(—g)'"5..S g —8710.S. (€]

In these equations R is the scalar curvature, g is the determinant of the metric
potential g,,, V, is a repulsive vector field of short range (k~') and S is an
attractive scalar field of long range. A subscripted comma means an ordinary
derivative. The vector quantity J? and the scalar quantity o, are introduced to avoid
singularities ; they are densities of weight + 1, and represent the diffuse sources of
V. and S, respectively (Das 3D.

From the invariance of the action integral upon variations of the metric
potentials one obtains the Einstein equations [8],
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while variations of the vector and scalar potentials give
VE— iV = —ant,  Jr=(—g) e, 7)
Su=—4no, o=(—-g) "o.. (8)

The semicolons mean covariant derivatives, and the quantities J* and ¢ have the
weight zero. From the Bianchi identities one obtains

.\Dﬂ\a |&.< ”O. on

We now adjust these equations for the case of static, spherically symmetric
systems. We write

ds®=e(dx")’ —e* dr’— r> d@>—r* sin> @ d@?, (10)
V.=V8], J*=J84, (11)

and consider all quantities (n, A, V, J, S, o) functions of r only. We then obtain, as
independent equations,

n'+A' =r(x*Ve "+ §'?), (12)

[r(1 =) = P[PV + Ve 1t 57262, (13)
r? e N Ve Y —k?Ve "= —4nlJ, (14)
r’e "N (r’S'e"™) = 4no, (15)

JV' +05'=0, (16)

where a prime means d/dr. Since in these five equations we have six functions, one
constraint is necessary to obtain explicit solutions. We consider here the case where
the sources J(r) and o(r) bear a constant ratio,

J=wa, w = const. an

One finds difficulty in obtaining the exact integration of the field equations. We
then try an approximate method: we expand the four fields (1,4, V,S) and the
two sources (J, 0) in integral powers of some dimensionless parameter €. This
parameter is identified later. We have been able to obtain the exact solution in the
lowest order of approximation, in which J, o, V, § are proportional to ¢, while 7
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and A are proportional to € In this order of approximation the field equations
become

n'+A =r(k’vV*+8), (18)
)y uw r(E*V2+ V24872, (19)
V'+2V'/r—k*V= —4nwo, (20)

S$"+28'/r=4n0, (21)
(wV'+8")0=0, (22)

where (17) has been used.
From the last three equations one obtains the field V, S, and the source g, then
from (19) and (18) one gets the gravitational potentials A and 7, consecutively.

IIl. VECTOR AND SCALAR FIELDS

One initially considers the region r <a, where the diffuse source o exists. From
(20) to (22) one then obtains the solutions, regular in the origin,

Vi(r) = ajo(vr), v=k(w’-1)""? 23)
4r0(r) = awvij(vr), (24)
S:(r)= —awljvr)+ B}, (25)

where jo(x)=x""'sin x is the spherical Bessel function of order zero, and a, 8 are
constants of integration. The subscript i means internal. One finds that the
parameter w necessarily satisfies @w?>1, othervise the mathematical solutions
obtained are physically unsatisfactory ; this subject is further discussed in Sec. V.

In the region r >a, where the source 0 =0, one obtains from (20)

V.(r) = ajo(va)(a/r) e ==, (26)

where the continuity of the vector field through r = a was imposed. The subscript e
means external. One observes the rapid decay of the short range field, for
a distance increasing from the origin. One also imposes the continuity of the radial
derivative of the vector field, and obtains

vaj(va) =(1+ka)js(va), 27
where ji(x)= —dj,(x)/dx is the spherical Bessel function of order one. This

relation represents a constraint for the radius a, for a given set of parameters kx and
@. Since variations of sign in the diffuse source of fields induce instability in the
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system, one finds from (24) that only the smallest positive value of va satisfying
(27) is of physical interest, namely

n/2<va<r. (28)
. The external scalar field is obtained from (21), with 6 =0:
S.(r)= —awlj(va)+ Bl(a/r), B=(1-w™™'" (29)

where the continuity of the field and of its radial derivative were again imposed. In
order to obtain the value of f, use was made of the relation (27). One observes the
hyperbolic behaviour (r™") of the scalar field in the regions outside the sources.

IV. GRAVITATIONAL FIELD

In the internal region (r <a) one obtains, using (19), (23) and (25),
M) =2 @l +jo(2vr) — (@™ + 1)), (30)
while from (18) one obtains
n:(r)=n(0) + ¢’ [Qw* - 1) Z(vr) + ASN - Wv?ﬁa\b -+ W RA—QL. 31
For convenience, we have introduced the constant
n(0)= lmTweF )3 (va) = (1 - %) *Ei( - 2xa) J& (32)

where the function Z(x) and the exponential integral Ei( —x) are defined by

Z(x)= ﬁ&éw&, Ei(—x)=— % tle™ .&, x>0. (33)

An easy inspection of (30) shows that A(0)=0; less trivially, one finds that
1(0)<0, and that both 7, and A, increase monotonically outwards. All these
general features are also encountered in the weak field limit of the internal
Schwarzschild solution.

In the external region (r>a), one obtains from (19), (26) and (29),

A (D) =Gmire® =2 (1 +xa) Vi) - L s, (34)

where m is the mass parameter, given by

QS\Q%HQNT%IWISN\OGJSL. (35)
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Finally, from (18) one gets
L 2 M
n.(ry=—Gm/rc +3 (1 +xr) V¥(r) +[kaV(a) e~ |Ei( - 2kr). (36)

One observes, in (34) and (36), the usual Schwarzschild gravitational behaviour
the asymptotic regions, "

n(r)=—-i(r)=-Gm/re?, rooo. 37

The 8:&:&@. properties of the gravitational potentials are easily seen m_..oE (18)
and (19). As in the cases of massive spheres, one finds that 5, A and 1’ are

continuous through r = a. In addition, one finds that also ' and n" are continuous
in our system., ‘

V. DISCUSSION

,E_.noo independent parameters characterize our physical systems: x, a and @
H:n inverse length parameter k is mainly résponsible for the size of the mwmﬂm:_“
indeed, one finds from (27) and (23) that the radius a is inversely proportional to aw

The NNBEQQ a is dimesionless. In Sect. 111, we have found that all vector and
scalar m_wE quantities are proportional to a, while in Sect. TV we have found that
the gravitational potentials n and A are proportional to a2, This suggests to identify
a as the small, dimensionless parameter in terms of which the series expansion of
Sec. II were made. As it can be seen in (35), the smallness of a2 implies
m/a <c*/G, a condition usually met both in large physical systems (stars, galaxies)
and small ones (atomic nucle;). .

Nm_:m:%. we have found that the dimensionless parameter w =J/¢g must satisfy
@”>1. This has a simple physical interpretation. The collapse of the system is only
prevented when there is a sufficient source J of a repulsive, short range vector field
to balance the attractive effects of the long range scalar field on the corresponding
source g.

From (5), (10) and (11) one finds that the time component of the energy
momentum tensor is

(38)
::m. is an exact result, and shows that both fields V and S contribute positive
definitely to T,.
An alternative expression for the mass m is obtained from (35) and (27):
1

Gm/c*=a’c "' W(w), W(w)=(w>- CS:SNIMV osc”! o[+ - (39)

(BXG/c*) Too=K>V2+ (V"2 + S§7%e™) e 2,

k4

+{w?*— C_L.
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This expression exhibits more clearly the dependence of m on the parameters a, x
and w. The inverse cosecant is taken between x/2 and 7, in order to satisfy (28).
A direct computation of the function W(w) shows that the energy mc? of the
system monotonically increases with |w|. The following two extreme behaviours

are obtained, for small and large |w|:
Gm/c*=n(a®/x)(6/8)"* for |w|=1 +u_", 0<d<1; (40)
Gm/c*=n(a*x) |w|* for |w|<1. 41)

We have not attempted to demonstrate rigorously the stability of our system.
However, a nonrelativistic form of reasoning is appropriate [6] in the present case,
where the Newtonian concept of force can be used: Starting from an equilibrium
configuration, admit a small perturbation, which produces some local compression
of the diffuse sources. Since w*> 1, the additional repulsive, short range forces will
exceed the additional forces of the long range, attractive field. As a consequence,
a tendency to local rarefaction is manifested. In the reverse situation of a local
small expansion, the same final tendency to restore the equilibrium configuration is

observed.
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