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THE INTERACTION OF PLASMA
WITH A SOLID SURFACE*

VIKTOR MARTISO VITS**, Bratislava

A theory describing the interaction of plasma with a solid surface is formulated. An
infinite plasma interacting with an infinite planar wall was chosen as a model for
theoretical considerations. A flux of charged particles to the wall in ambipolar
approximation was calculated as a first step. Equations describing an electrostatic sheath
are presented taking into account heating, variation of the ioh mobility and the
electron-ion recombination. Boundary conditions are studied in more detail when
particles can be emitted or reflected at the wall surface.

B3AMMOJEMCTBHE MIA3MbBI C TBEPIO¥ NOBEPXHOCTBIO

B pabore chopmynupoBaHa TeOpHs, ONHCHLIBAIOLIAs B3aHMONCHCTBUE IUTa3Mbl
¢ TBEPAOHA MOBEPXHOCTLIO. B KkayecTBe MOAEHM AAA TEOPETHYECKOrO PacCMOTPEHUN
Gbina BbIOpana GeckoHeWHas M1a3Ma, BIAHUMONEHCTBYIOUIas C GECKOHEUHOH MIOCKO#
cTeHko#. B amMGUnOnspHOM nNpUOAHKEHHHM PACCYMTaH MMOTOK 3aPAXKEHHBIX 4acTHl,
NafaoWuX Ha CTeHKy. [IpuBeneHbl ypaBHEHHS, OMHUCHIBAIOIME 3AEKTPOCTATHIECKYIO
000J0YKY € Y4ETOM Harpesa, MIMEHEHHS NOABUXHOCTH HOHOB W 3JIEKTPOH-MOHHOMN
pekoMOMHauuu. Bonee nmogpoGHO M3YYEHbl IPAHMYHBIE YCNOBA ANA Ciydas, KOrga
4acTHIbl MOTYT HCIYCKATbCH MOBEPXHOCTbIO CTEHKH WIIH XK€ OT He€ OTPaxaTbCd.

I. INTRODUCTION

The plasma treatment of solid material is based on the interaction of particles
present in the plasma with a target surface. Near the wall the properties of plasma
change entirely, since an electrostatic sheath adjacent to the solid surface is formed.
In this region the condition of quasineutrality must fail since to balance ion and
electron fluxes to the wall the ion concentration must exceed the electron
concentration by a factor equal to the ratio of their normal velocities at the wall. It
is clear that the interaction of the plasma with the solid surface is strongly
influenced by the properties of the region close to the wall.

* Contribution presented at the Second Symposium on Elementary Processes and Chemical
Reactions in the Low Temperature Plasma, Vritna dolina near Zilina, 1978.

** Department of experimental Physics, Komensky University, Miynskd dolina F2, CS-816 31
BRATISLAVA.
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0 M MMM %Momoa paper we aim at finding information about the sheath, namely, the

" ity m:a.é_oo_w% of charged particles when striking the surface ,.\.Sav the
ary conditions with respect to properties of the solid surface. ,

IL. A PLASMA MODEL

In m ;o . .
noooEcva\ﬁmvv__om:OE the Emwam dimensions are so large that the electron-ion
fecom _m ion n.scma be .me: into consideration. Then as a good approximation an
. “ %@M mw:un interacting with an infinite planar wall can be used as a model for
retical consideration which enables
. us

S orenical consice to formulate the problem on

When i ionizati

hen a is the ionization rate and B the recombination coefficient, the
production rate of the charged particles can be written as

Melﬂlmw.mlﬂ Q=||u=|=+ 5 A:

wher iti i

e -Mmam w:.ﬂ n_ are the number densities of ions and electrons, respectively. In the

plasta ar QZ.UE the wall quasineutrality is present and number densities of ,
ns and ions are the same, and reach the equilibrium number density

n.=n_=n,=a/ff. @
- III. FLUX OF CHARGED PARTICLES TO THE WALL IN AMBIPOLAR

APPROXIMATION

mcm. ::.m mvvnoxmimmoz no net current is supposed to flow to the wall (the solid
ace is made of insulator or it is held at the floating potential). Then the charged

particles move to the wall by ambipolar diffusi i i
D o T 8 y ipolar diffusion which can be described by the

P =

HHQH@ Dn 1S Hm~@ N—:c:..vo—mu a—m—.—wnﬁvn— 8®mm~gamuﬂ N.:Q Z1s H—ﬂ@ HQ
- 3 A

D.dn_ n n\?
neo. dz* ne T A=|ov ) @
Integration of this equation yields the result
D, Ammvle 2/n\* [(n\?
n2a\dz) 3 3 A:|ov IA=|QV ’ 5)
where we have assumed that dn/dz =0 for n =n,. This result can be written as

(A’=D,/a)
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A n n
iam = 3[(1-5) () | e ©
and integrated again for the boundary condition n =0 at the wall (z=0)
n /2
iei V3+ AN —+ Hv
ER | ¢ b A ™

1/2

A <w+~<w|?m...iv

The result is plotted in Fig. 1 together with the flux density of the charged particles

dn_ (@DN\ () (2 24q)
=" gaN..:oAuv AH =°VAN§+Q ' (&

The flux density at the wall is given by
%«- 1/2 U 1/2
e (42) = (2)” ©

05
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-10

Fig. 1. Normalized number density n/noand normalized flux density j(3/ aD,)'” as functions
of normalized distance z/A in the ambipoar approximation.

IV.SHEATH

The ambilopar approximation cannot give any information about the sheath-The

problem of a plasma sheath near the wall has long been studied (see for example
[1—5D). Unfortunately, the progress that has been made so far as regards the
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Poisson’s equation i
. d ..
bl escribes the electrostatic field produced by a charge

FP_ e
QNN - |mIc A=+ |.3|v ’ AHOV

B
ccrﬂnﬂ e 1s ﬂ-ﬂ ﬂ~0=~0=nmuw Ormﬂmﬂu Eo Hro —UOWB.——HSH( Om m—@@ MHUNOO mnwa e H:
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electrostatic .
potential. The gen: .
ty equations generation of charged particles is given by the continui-

d 8
=+<+ ”|l=+. d on_
3z ¢ i 5 (V=% an

By using (1) and integrating we have
n,V,—n_.V_=jle
iro . . . i U HN |
dﬂw Wg oﬁ: the net electric corrent density at the wall "
entum equation for the positive ions can _uo written as [7]

v.dVe__edo 1d

= T d n g e<eiP) V-V 2 a3
n, ot

Here €+ and V_ are ift vi iti ' € the 10n, ¢
drift velocities of char; Wﬂﬁm UmﬂﬂmﬁmOm m, the mass of the i
’ s Lz

ﬂmﬂﬂw Z OOB@O—J
ent of the random .
ve ..
momentum transfer. locity and v, the collision frequency for the

T'he collision f
- . .
quency is either a constant (constant mean free time) or it vari
varies

with the drift velocit i
> d y of the ion. For a speci
the collision frequency can be written mm Nﬂoa,wmnﬁm_m fie constant mean free path

vi=v.,o(l+am V32 12
0 1kT,)'?, (14)

where v., is the i
»zero-field* collision f
a numerical factor d : requency, T, the gas tem
. etermined by th . perature and
heating of . T y the natura of the ion-atom i i
g of positive ions in the electric field is described by the z o”“wncoz. m,;o
nent of the

random energy [8]
m.{cl)=kT, +ym, V%, (15)
whert y is a numerical factor.

Similar ~v~ we
> can also write the
considering the fa momentum equation for the elect
g ct that the electron drift velocity is much smaller th rons. But,
136 an the random

velocity of electrons, the electron density very nearly satisfies the Boltzmann
relation [8, 91
n/n,=exp (e®/kT-) . (16)

The numerical solution of this problem is presented in {10].

V. BOUNDARY CONDITIONS

Now we try to study the processes at the solid surface in more detail. In order to
strike the wall the z component of the particle velocity of the drift V,, and the
random velocity ¢ must be a positive one. The flux density of the striking particles

can be written as

V. [(%®
jo=2m ‘_\ ._v (V. +c cos 8) c*f(c, ®)sin @ d¢ dc + a7
0 (4]

oo QH-
+Na_~ .— (V. +ccos #) f(c, ) sin & d¢ dc,
Ve /0

where #,, must obey the following relation
<z+n8m¢auo. (18)

As the velocity distribution is axially symmetric, the distribution function f does not
depend on the variable @.

The flux density at the wall due to the drift is ju=Js
flux density of the particles with a negative velocity at the wall. For nonemitting
and nonreflecting walls j.=0. Generally, the wall can reflect failling particles and

their emission is also possible. Then we have

+j,, where j. represents the

o= =% e m:a?uﬁix:u|~... (19)
where # is the reflection coefficient and Je the flux density of the mawzwa particles.
The formulae (17), (18) and (19) represent the boundary conditions in the most

general form.
rstand these conditions we make a rough approximation when

In order to unde
the distribution function f i supposed to be independent of & The formula (17)

can be integrated over & to give

o

Is NW .V, +2aV, b.f c*f(c) dc +nVe ﬁ Q?van+a _.< nu\?vaq.

(20
In the limit where the random velocity of particles is very much greater than the
drift velocity we may put v, —0. Then
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-1 1
k=5 =z<s+a n,{(c), 2n

where (c) is the mean speed. The drift velocity at the wall is given by

Y et O S
=217x (O 2(0+%) " (22)

Vi

In a special case when the drift of particles is controlled only by diffusion, equation
(21) yields the familiar results [11]

-1 _lpan
&nlhsAﬁv NUQN. s ANWV
In case of the reverse limit, when the drift velocity is large in comparison with the
random velocity, we may put V,,— . Then

j=nV,=j, (24)

and the boundary condition has the form

o t+j.=0. (25)
As »x, j, and j, must be positive numbers or zero, we get j.=0 and »,=0.
Therefore, the last case can occur only for nonemitting and nonreflecting walls. -
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