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THE WIEDEMANN-FRANZ, LAW IN SEMICONDUCTOR
AND METAL GLASSES

JULIUS KREMPASKY*, VALERIA MACKOVA**, Bratislava

In the present paper relations for the Wiedemann-Franz law in amorphous semicon-
ductors and metals are derived on the basis of the theory of the modified relaxation time.,
Measurements have shown that the Lorentz number is often a significant function of
temperature. The calculation of the electronic component of the thermal conductivity
from the electrical conductivity under the assumption that the Lorentz number is
constant (as it is often used) can lead to considerable errors, Because of the absence of
suitable semiconductor glasses the results following from our theory were verified only
indirectly (by means of the Seebeck coefficient) and in metal glasses by direct
measurement, respectively. The agreement between the measured and the calculated
curves of the temperature dependences of the Lorentz number can be considered as
good.

3AKOH =§m=>=>-e~.>==w INA NOAYNPOBOTHUKOB
M METAJUTMYECKHX CTEKOJ

B nauuoit pabote nonyyeua 3aBHCHMMOCTb THMA 3aKOHa Bupemana-®panua ans
aMopdubIx N0JYIPOBOJHUKOR M METa/NoB, HCX0AR M3 Teopun MOLHMDHUUNPOBAHHOM
pensikcauun. Msmepenus noKasanu, 4to yucno Jlopenua yacto ssnsercs CYIUIECTBEHHOM
dyHkuMed TeMnepatypol. Berducienue SAEKTPOHHOM COoCTaBAIOWE TENNONPOBORHOC-
TH U3 3NEKTPONPOBORHOCTH B Cay4ae NpeanonoKeHus, YTo YHCIo Jlopetua apnsercs
KOHCTaHTOH (KakK 3T0 wacro AENaeTes), NPUBORUT K 3aMETHBIM owubkam. Benegcrsue

L INTRODUCTION

In recent works the study of semiconductor and metal glasses has been oriented
towards optical properties and electrical conductivity, less towards thermoelectric
properties and magnetoresistivity and only seldom towards thermal properties. For
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studies of the lattice thermal conductivity, the electronic component is usually
subtracted from the total thermal conductivity using a formal application of the
Wiedemann-Franz law (which is expressed in the form for crystalline materials) to
non-crystalline semiconductors as well as to metals [1]. There are not enough
reasonable arguments for such a procedure because it is widely known that the
transport parameters have in principle different expression in the non-crystalline
phase than in the crystalline one.

The existing theories of non-crystalline materials do not give any full solution of
this problem, because all of the succesful theories of electrical conductivity (the
theory of hopping conductivity [2, 3], the percolation theory [4, 5], the theories
based on the Frenkel-Poole mechanism [6, 7] etc.) cannot be practically applied to
the electronic thermal conductivity and the more generally formulated theories [8]
do not give results suitable for experimental verification. The possibility of solving
this problem arose, when the concept of the modified relaxation time was
formulated by the method of the Boltzmann formalism [9, 10]. The results
obtained by this theory are in a good agreement with the thermal dependences of
transport parameters in semiconductor glasses. It is also very effective for the
explanation of the peculiarity of the temperature dependences of the electrical
conductivity in metal glasses.

We presume that this. theory will give reliable information about the relation
between the electrical conductivity and the electronic thermal conductivity of these
materials, i.e. about the Lorentz number and its dependences on the temperature.

I. FUNDAMENTAL IDEAS

The ratio of the electronic component of the thermal conductivity, i.e. the .
Wiedemann-Franz law in the Boltzmann formalism is expressed by relation [12].

A__1 (r)(zE*)— (1E)?

o eT {(1)* ’ @)
where the quantity (TE") is defined by the function
Av \\»8 n+3/2
tE") =—— E T(E) exp (—E/kT) dE 2
(tE") VDR ), (E) exp ( ) 2

for the classical statistics and by the function

oo

(TE") = E;*? \ e r(E)( ~ wl@ dE, A3)

for the Fermi-Dirac statistics. In these relations E is the energy of the charge
carriers, 7(E) the relaxation time, £ the Boltzmann constant, T the temperature,
E the Fermi level and fo the equilibrium Fermi-Dirac function
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;M an@.:ﬁ number is defined by the coefficient in the relation A/o=LT,
ceording to papers [9, 10] the relaxation time of non-crystalline materials can

be expressed with the aid of ¢ ion ti izi
e 1d of the relaxation time .(E) ormBo:w:E:m the crystal by

b 1 IwAmvw = 1
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where & mm.ﬁro mean distance between the local potential barriers (connected with
the <mEmEm_m of the long range order valid for a crystal, /. the free path of the
charge carriers oowno%onﬁnm to the crystalline state and P(E) the probability of
tunnelling the charge carriers through the barriers defined (in the simple case of
a square-type barrier with the hight W and width d,) by the relation

P(E)~exp * uwﬁws*gamz:&,w =exp [~ B(W—E)"] ©)

o 5 .
MHWMMM@ A MME me\w\wwn..\ncﬁ mass of the charge carriers, /& Sw Planck constant and
. cSE.nomma to the mentioned facts it is necessary to divide the region of
Integration in the integrals (2) and (3) into the regions:

a) the region 0<E < W, in which (E)=n(E)g(E)

b) the region W<E <, in which T(E)=tn.(E).

Then, e.g., the integral (2) can be divided into two components as follows

:c E"***5(E)g(E) exp [~ E/kT] aef Ad

Eny = IA
() 3Va(kTy™

+ \s E""1(E) exp [~ E/kT] dE.

Both parts of this expression have a clear physical meaning: the first of them
ooqomno:mm to the contribution of the electrons with an energy smaller than the
:Qm? of the potential barriers, the second to the contribution of the electrons
moving above the barriers, ’

It is ::uo%.mc_o to find the analytical solution of the mentioned integrals with
regard to the functions T(E), P(E) and f(E ), therefore we can give the calculation
o:_M @a special cases. For non-crystalline semiconductors in which we use classical
2.2.5:8 (i.e. integral (2)), due to the low concentration of charge carriers we
divide the whole interval of temperature into three regions :
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a) Very low temperatures defined by the condition E < W. In this case P(E)<1

and
2(E)~1.(E) m P(E). ®)

Under this condition the second integral in the relation (7) can be neglected in

comparison with the first integral.
b) Mean temperatures, in which P(E)<1; for the sake of mathematical

simplicity we shall use the function (5) in the form

:mvnimv* _+p maes T&Eumv_v. ©)

The characteristic constant a is defined by the approximative relation a =
=~[787/2d.

¢) High temperature defined by the condition E> W. The first integral in the
relation for this case can be completely omitted.

It is necessary to use the Fermi-Dirac statistics in non-crystalline metals. The
mathematical simplicity (9) is not useful, because the function fo(E) is not
analytically integrable. We shall therefore try in this case to approximate for the
calculation of these integrals the Fermi-Dirac function by a simpler function.

HI. THE LORENTZ NUMBER IN SEMICONDUCTOR GLASSES

The relaxation time of the crystalline semiconductors 7,(E) is usually expressed
in the form

o (E) =1.E’, (10)
where s is a characteristic exponent of the scattering processes in the crystal
(s = —1/2 for thermal scattering and s =3/2 for scattering on charged defects).

Under the conditions mentioned above the following relations can be obtained for
the Lorentz number:

L(T)=(5/2+s)(k/e)*1/(1-bT)?, (11)

where b =gk/2VW.
For the last two regions we shall assume that the exponent s has the value

s = —1/2. In these cases the following approximate relations were found:
L(T)=(k/e)*(W\/kT)* exp[2W,/kT), (12)
_ L1 +4(kT/W)+ NQ&,\S\VNW
L(T)=(k/e) A THe “ (13)

where the parameter W, is defined by the equation
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chalcogenide amorphous semiconductors [13] {8 =4xd, (2m*)'?/h~4 x 10" and
.& =3 X 107%}, the critical temperature T, ~1/b is at room temperatures. Compar-
ing with the optical measurements [14] we can state that for these semiconductors
the value of W, is of the order 0.1 eV. According to relation (12), the Lorentz
number has the values I, >L(T=0), but decreases with temperature, while at high
8.5.@2&58 (W=0.2eV is already AT(W<1)) the Lorentz number has the
minimum value and js practically independent of temperature. The temperature
dependence L =L(T)is in Fig. 1. In the experimental part we shall show that this
type of the Lorentz number temperature dependence is very probable.

IV. THE METAL GLASSES

(TE") HMmS\s SAmVM?SA lwlmv dE x 7 (15)

" oo
ARG e

h smisimx - wmv dE

.,;o 58«5555@ ESQ&AP 8vom=co transformed into the Fermi integrals
using the transformation ’

\c B - wmv dE = (n +3/2)kTY***I(n+1)Fyorn(n),  (16)

where Fovin(my=(1/I(n + C_\ x"/exp [x —n] dx are tabulated. The remaining
A .
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integrals can be calculated only numerically. For the more general conclusions it is
more advantageous to obtain an approximative analytical solution. For this
purpose we used as in [11] the approximations:

1=9(E)=1-exp [~ B(W—E)"|~1—(E/Wy, 7)
B =——p—r—~1-1(E)" (18)
exp ﬁlil\&, .‘_+ 1 ’

We shall see that the influence of the approximation (17) is not too important, as
it concerns only the electrons with the energy E < W. The second approximation is
valuable only for E < B, which is sufficient because of the always valid inequality
W < Er. The exponent g can be specified from the equality of the derivatives of
both functions for E = E.. We obtain the result

q =E:/2kT. (19)

To what extent this approximation is satisfying is shown in Fig. 2, where both
functions are calculated for E:-=1¢€V and the temperature T=100 K, 300 K and

500 K.
With regard to these approximations the Wiedermann-Franz law (1) can be

expressed for metal glasses by the relation (s=— 1/2).

A (k\? 1 W LAY
o=(e) T r=amy 4o+ Ad ) - &0
w3 W
A7) +AdzT)
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A=L APJ sﬁ (rg)’ _ (pq)®
4\E/ ((p+q+1)(q+1D)(p+q+3)q+3) (p+q+2)%(q +2)*>
1 W.\* W
D=3z (g m@:mxi:.

If the Fermi level is high above the value W(E» W), the coefficients A =A,=
As=A,=0and G(T)—0. In this case, we can write relation (20) in the form

A _(k\? 6F,F,~4F>
o Amvﬂ 2 2y
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which corresponds to the expression of the Wiedemann-Franz law in crystalline
metals. In this case almost no change may appear during the amorphization of the
metals. However, when Er=W, i.e. the Fermi level descends close to the level of
defects, it is fiecessary to consider also the other term. In this case, however, the
individual coefficients are only slightly dependent on temperature and we can
consider them as constants. As always G(T)<1, we need not consider this
dependence on temperature. Under this condition the Wiedemann-Franz law can
be expressed in the form

A 1 1 1
'.mD‘NJIw-IT.wN ﬂ' lN.IﬁleamJ’b»

MI
and the temperature dependence of the Lorentz number is determined by the
relation

B, (22)

1 1 1 1
Nk ”mc’mn ﬂuT.wM lﬂdlwu mwu*nm& ﬂ
The dependences expressed in this form can be used for comparison with the
experiment.

(23)

V. DISCUSSION

.‘H.dm experimental verification of the validity of the Wiedermann-Franz law is
difficult because of obtaining the whole thermal conductivity immediate by

0>2X10°Q'm™,

the o_.ooQoE.o component of the thermal 8:Q=Q§Q predominates. In these
materials the term A/oT defines directly the Lorentz number. All the amorphous

o
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ﬁ Fig. 1. Temperature dependence of the Lorentz
/F/ number according to approximative relations
T

(11),(12) and (13).
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Fig. 2. Calculated dependences of the Fermi-Dirac function on the energy for the following values of
temperature: T= 100 K, 300 K, 500 K, according to relation (4) (continuous line) and approximative
) relation (18) (dashed line).

semiconductors prepared up to now are below this value, therefore the Wiede-
mann-Franz law cannot be verified by direct measurement. At present the
attention is centred upon the so called “narrow gap” amorphous semiconductors
(Bi,Te;, Sb.Te;, etc.), in which the electronic conductivity could reach the above
mentioned value. Meanwhile we can draw a conclusion, as regards the curves of the

‘dependence A/o, only indirectly. From this aspect it is remarkable that those

transport parameters of noncrystalline semiconductors, which contain in their
expression only the integrals of the type ( T), (7*), etc. (e.g. electrical conductivity,
Hall mobility, magnetoresistivity) have no extremes in the temperature depen-
dence. However, the Seebeck coefficient, e.g., which contains the integral for the
type (tE ) has an extreme very similar to the dependence shown in Fig. 1[15, 16].
As the relation of the Lorentz number contains the expression of the type (tE ), we
can assume that the dependence in Fig. 1 is real.

In the metal glasses, except for the range of very low temnperatures, the condition
A.>A,, is always valid and therefore the Wiedemann-Franz law can be verified by
direct measurements. However, definite data for this region are not given,
measurements were made on samples of PdgSi,, [17). The temperature depend-

63




ence of the measurements of electrical conductivity of this metal glass is shown in
Fig. 3, the ratio A/0 in Fig. 4 and the Lorentz number in Fig. 5. The curves in Figs.
4 and 5 have been found by the Kohlrausch method [18]. Even if the measurements
have been characterized by a considerable €rror, we can assume that the measured
dependence agrees with reality. Up to about 650 K the sample remained in the
amorphous state (it can contain only the nuclei of the crystalline phase) and above

this temperature the sample crystallized, as shown by a sudden break in the
measured dependences

10

s { n i . | . |
300 400 500 600 700 TK]

Fig. 3. Measured temperature dependence of the electrical conductivity for the samples of Pdg,Si,,.
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Fig. 4. Measured temperature dependence of the ratio A/o for samples of PdgoSiz.
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It is clear that the dependence in Fig. 4 cannot be considered to be a stright line,
which corresponds to the dependence /0 = const. T characteristic for the crystal.
Let us consider that the exponents p and q have large values. For Er=1eV and
T=300Kis q =E,/2kT=19 and for E — Er p— o, Therefore the coefficient A,
has a value near zero and if we omit also the term with the coefficient Aj, which is
less important for the higher temperatures we obtain from relation (22), the
function

- A

A L
2=

meﬂxlm_u*umn NJ. ANMV
This function (continuous line in Fig. 4) approximates the measured dependence
very well. Analogically for the Lorentz number we get the function
1 1
L=B,—B,=+B, T

T (26)

This function has the extreme for the temperature T, = 2B,/B, and the measured
dependence (Fig. 5) can be considered as the part following its maximum.
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300 400 500 600 700 T @Q

Fig. 5. Temperature dependence of the Lorentz number for samples of Pd,,Si,,.

VL. CONCLUSION

In the present paper it has been shown that the Lorentz number is generally the
function of temperature in non-crystalline metals and semiconductors. This conclu-
sion has been verified also experimentally on metal glasses and indirectly on
semiconductor glasses. Deviations from the supposed constant value are relatively
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large and they can reach values>100% ; therefore we must be careful in the
application of the Wiedemann-Franz law valid for crystals with the temperature
independent Lorentz number in the case of the non-crystalline solid state.”
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" Note at the proofs: Recent investigations have shown that in some amorphous metals the
condition E- < W can be also fulfilled. Because of very small differences (W — E;.) our results remain
correct in this case.
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