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THE QUANTUMMECHANICAL CORRECTION OF THE
QUASICLASSICAL DENSITY OF STATES OF A PARTICLI
IN A GAUSSIAN RANDOM POTENTIAL

$TEFAN BARTA*, RUDOLF DURNY*, PETER NAGY**, Bratislava

The expansion of the partition function and of the density of states in a power series of
the Planck constant are found. The proposed method gives the corrections for an
arbitrary autocorrelation function. Numerical results are also presented.

KBAHTOBOMEXAHHMYECKHME NMONMPABKH K KBA3MKJIACCHYECKOM
ILIOTHOCTH COCTOAHMH YACTHLDBI B CIYYAVIHOM
YAYCCOBCKOM IOTEHUHHAJIE

B pa6oTe HalcHbI pa3NoXeHus dyukuny pacnpefenetud 1 QYHKUMH TNO0THOCTH
COCTOSIHMI B CTeNeHHbIE PAibI MO NOCTOAHHON Mnauka. [pennaraempii MeTOA AaéT
[ONPAaBKY s POU3BONLHOA (PYHKIMH ABTOKOPDEALHH. [MpuBefietbl TAKXKE YUCACH-
HbIE€ PE3yAbLTATHI.

I. INTRODUCTION

Many physical problems of noncrystalline solids are solvable in the one electron
approximation. The appropriate use of the Hamiltonian enables us to compute the
statistical sum and the density of states (d.s.), which latter represents an important
quantity, because it defines all thermodynamical properties of the system and is
further closely related to the optical and transport properties. The density of states
of a particle in the random potential is known only in some’ special cases. In the
deep tails d.s. can be computed by the “minimum counting method” [1]. The
quasiclassical approximation [2], [3] can be utilized for positive and small negative
_energies, In this paper our aim is to use the method of Yaglom [4] in order to
calculate the quantum mechanical corrections of the quasiclassical d.s. and to find
out the region of validity of these corrections.
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Il. MODEL

An electron with the effective mass m in a random potential U(r) will be
described by the Hamiltonian

p’
.m".Nﬁ:l.T U(r).

Providing the potential U(r) is Gaussian, then it is statistically determined by the
first two correlation functions

2
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The relations (1) express explicitly the fact that the potential U(r) is macroscopi-
cally homogeneous and isotropic. The parameter n? is the mean square potential
fluctuation and L is the correlation length. The function W is defined so that
W(0)=1. The symbol { ). means the configurational average over all possible
values of the potential U(r).
It can be shown that the dimensionless parameter defined by

m..—n

*2
B mL*n

2)
does not depend on the choice of units for L, m, n, therefore in the next
calculations we use the convention

L=m=n=1.

h* is the only parameter which determines the shape of d.s.

[Il. THE FUNCTIONAL AVERAGE /

In this section our purpose is to expand the statistical sum in the power series of
the parameter h* (2). Doing that we use the path-integral representation of the
statistical sum [5].
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Here the Gaussian behaviour of the potential U(r) has been utilized. The last
path-integral can be expressed using the Wiener measure. Similarly as in paper [4]
we obtain the statistical sum in the following form
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The symbol { ), means the average over the multigaussian random vector function
o(u). The different vector components are statistically independent. The first two
correlations are

(e(u)). =0 &)
A@»AtvﬁwAﬂch = &@AEEAS“ :J - EEQ.

Here o,(u) means the x-th component of the vector o(u).

IV. EXPANSION OF THE STATISTICAL SUM AND ds. IN TERMS
OF THE POWER SERIES OF i*

According to the results of Yaglom [4], we shall express the statistical sum in
the form

(2. =gy S0z )] ©)
The factor (2xh**B)~>? is the statistical sum of the free electron. Expanding the
exponential function in formula (4) we get
—3/ ~ 2
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The quantities W, are in close connection with the derivatives of the autocorrela-
tion function (1) and they are defined by

W, WQM_.. b\ﬁ EA\«EASI@?\VVNV du du’ . (8)

The averaged values of the types
(Wador (WuWo)os. 9)
41



define the numerical coefficients of the expansion (7). The method of computing
them is shown in the Appendix. We calculate the respective d.s. from the
well-known formula

H o +ie

(Z(B)) €™ dB.

IE)=353 ). -
(o is a positive convergence parameter). For further calculations we shall use the
integral [6]
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D,(z) is the function of the parabolic cylinder 71
The density of states with the quantum mechanical corrections is then

g(E) ufﬂw_ = {go(E) +h**g:(E) +h**g(E)+h**gs(E) + ...} (10)

The corrections g.(E) can be expressed using Eq. (7) in terms of the functions
D,(—E). The zero-order approximation ,

1 1 E?
i 9E) = e O (-5) D-anl~B) (1)

4

is known as the quasiclassical approximation.

v. THE NUMERICAL RESULTS 4
We shall not investigate the convergence of series (10) exactly. We can expect
a good convergence of the series (10) in the energy region, where the quasiclassical
approximation (11) is acceptable. From the paper [3], [8] it is evident that the
quasiclassical approximation is not reasonable for energies

E< —(2h*?)"*=E.. (12)

We divide the whole energy interval into three regions. a) E <E. . The states from
this interval are localized in deep potential wells [1]. The finite number of
D:N:E:::on:miom_ corrections cannot give the proper results. b) E.<E<1. The
physical interpretation of these states is not clear. The series (10) converges well. 9]
E > 1. Electrons with these energies are extended and only a little scattered by the
random potential. The higher order quatum mechanical corrections are negligible.
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Table 1

The values of the parameters h*and E,

L=10nm

h* E. L=5nm L =2nm L=1nm
n=10eV 0.028 8.6 0.055 55 0.138 3.0 0276 1.9
n=05¢eV 0.039 6.9 0.078 4.3 0.195 24 0.390 1.5
n=0.1eV 0.087 4.0 0.175 2.5 0.436 1.4 0.873 0.9
n=0.05¢eV 0.123 3.2 0.247 2.0 0.617 1.1 1.234 0.7
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Fig. 1. The functions g:(E), gE), g5(E) versus Fig. 2. The d.s. in unit states/nL* versus energy in
energy in units 7. The labelling of curves is units for fi* =0.8. Line 1 represents the quasiclas-
equivalent to the order of the correction. sical approximation, line 2 represents d.s. with the

) first three corrections.

We need not discuss the results for different values of 1, L, m, because the role
of the quantum effects is determined by the parameter h* ).

The smaller h* is, the better series (10) converges. The values of h* and E. for
different L, and m =m, are shown in Tab. 1. We have used the formulae (2) and
(12).

The first three corrections for the autocorrelation function (U(r,) Ur.)).=
exp (—(r,—r2)") have been calculated. The functions g(E), g(E), g-(E) are
plotted in Fig. 1. For h*=0.1, 0.5 the corrections are negligible. Fig. 2 shows the
comparison of the quasiclassical approximation with corrected d.s. for h*=0.8.
The respective value of the critical energy E. is E.= —0.92. As it has been
anticipated the quantum corrections decrease the d.s. for negative energies and
increase them for positive energies, because the quantum effects shift the bound
states energy levels to higher energies.
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APPENDIX

THE COMPUTING OF AVERAGES OF THE TYPE (W,.),

In this appendix we shall use the simplified notation
eir=e0(u)—e(u) (A1)
wi2 = ((0c (1) — 0 (uD))(0: (u2) — 0:(u2)))-

The functions @(u) are statistically defined in Eq. Gv To compute the coefficients
(9) we have to know the averages

Aﬁlﬁm-.vavcu AA|©W~.VEA|©WN.v:v°. A>Mv
We define the generating function Sy of N variables
Sn(x; ...xzva A Mk%: vv ; (A3)
=1

The averages (A2) can be expressed by means of derivates of the generating
function, for example

3"8(x1)
((—eh))e= X% | eio (A4)
and so on.
Since the random function g is Gaussian, we find:
Sn(x1...xn) =D(x1 ... XN), (AS5)

where Dy(x;...xn) is a determinant of a matrix 4 of the order N WZ with the
matrix elements

Ay =04+ 2V wi .
Using the formulae (8), (A1), (A4), (AS) we get the coefficients

1 1 1 1
1
Ai_vnn%\ Albmn‘vaz_ainlu%%E:mz_aﬁnlm
0 Jo 0 Jo

and similarly
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. 1 1 1 1 1 @
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