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STATISTICAL INTERPRETATION OF SOME PRODUCTION
PARAMETERS BY MEANS OF THE GENERALIZED

AND MODIFIED URN MODEL
MIKULAS BLAZEK®, Bratislava

It is assumed that an intermediate state (urn) contains arbitrarily many sorts of
constituents, each sort including arbitrarily many members. If one constituent is drawn at
random, then a given number of constituents of each sort is created (or annihilated) in
the state under consideration. This procedure is repeated.

An approach is developed which allows to obtain the normalized probability that in N
draws (N=1) the constituent of a given sort is drawn K times (0<K <N); even the
probability can be included that in the first « as well as in the last w draws the constituent
of the given sort is (or is not) drawn. It is shown that already the case of two sorts of
constituents promises several interesting physical implications.

In the corresponding limits the binomial as well as the Poisson and the Gaussian
distributions follow. Those asymptotic cases allow to interpret statistically several high
energy parameters like the slope or the Feynman scaling variable. Conditions are stated
which allow to deduce how many sorts of constituents are to be introduced in order to
explain the asymptotics observed in experiments. The statistical expression of the
confinement is obtained as well.

CTATHCTHYECKAA MHTEPNIPETAUMA HEKOTOPBIX HAPAMETPOR

POXIEHHS, OCHOBAHHAS HA OFOBMEHHON M MOIHMOUIHMPOBAHHON

MOIEIN AIMMKA

PaBoTa HCXOUMT H3 NPEANIONOXKEHHUS, YTO NPOMEXYTOUHOE COCTORHHUE (SILMK) cofep-
XHT TIPOU3BOJILHOE YHMC/IO Pa3NHYHBIX COPTOB COCTABMMIOUIMX C MPOUIBOIBHBIM KORH-
4eCTBOM 3JIeMEHTOB. Eciu cny4aitHo BbIHYTD U3 AIIMKA OfHY M3 COCTABARIOWIMX, TO 3TO
03HAYaET, 4TO POXNAETCH (MIM AHHUIMIUPYET) COOTBETCTBYIOLIEE HUCIO IEMEHTOB
AAaHHOTO COPTa COCTABASIOMMX. 3Ta MPOLUEAYPA NMOBTOPAETCA.

B nannoit pabote pa3BuT NOAXof, NO3BONSAOMIMHA TONYHHTE HOPMHPOBAHHYHD BEPOAT-
HOCTB TOrO, 4T0 nipu N. po3sirpbiiax (N = 1) cocTaBRKIOMIAsA JAHHOTO COPTA BLITAHYTA
K pa3 (0<K<N); B nony4eHHOE BbLIPAKCHUE MOXHO TAKXe BKIIOYHTb BEPOATHOCTH
TOTO, YTO BO BCEX MEPBbIX O DPO3BIIPLIUAX M BO BCEX MOCICAHHUX (@ PO3BITPHIIAX
COCTABAAIOLIAA [AHHOrO cOpTa BLITAHYTa (WM He BbITAHYTa). [Tokazawo, 4To yxe
cny4adt 1BYX COPTOB COCTaBASIOIMX OGEIAET HHTEPECHBIE PUIUYECKHE BLIBOMbI.

B cnyyae COOTBETCTBYIOUMX NpPERENBHLIX NEPEXONOB MOAYYAOTCH GUHOMMANL-
Hoe pacnpefienedue Kak M pacnpeaencHus Ilyaccona u Faycca. DTu acumnrtoTnue-
CKHE CAyYaH MO3BOMAKOT JAThb CTATHCTHYECKYIO MHTEPNPETALMIO HEKOTOPBIX BbICO-
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KOSHEpreTHieckux napameTpos, Takux Kak, HaNpUMep, HAKIOHBI CEYEHMH WAM Mac-
wrabHas nepemennas Peitumana, Ccbopmynuposaunt Takxe YCNOBHSA, NO3BOAKIONUIHE
CRENATH 3aKAIOYEHHE O YUCTIE COCTABAIOUINX, ANA OGBACHEHHS ACUMITTOTHK, HabtoNae-
MBIX Ha onbte. Kpome Toro, nonyuewo takxke CTaTHCTUYECKOE BbIPAXEHUE s
KoHcpaiHMeHTa.

L. INTRODUCTION

A <E.mw€ of experimental data obtained from collisions of elementary particles
at <o.n<. high energies presented in the form of convenient figures is often fitted by
heuristic formulae involving several free parameters. For instance the formula

a(l —xg)° exp (= bPy) . ¢))

is _._mma for the parametrization of the Lorentz-invariant cross section in the
Inclusive muon pairs. production at 150 GeV by x* mesons and protons on
c@J.EEE [1]. In expression (1), a, b, c are fitting parameters, x; is the Feynman
scaling variable and P; is the transverse momentum. On the other hand there are
well known cases when the cross section or the intensities of beams decrease
exponentially, say, with the energy E, |
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where E, fixes the scale.

Due to the fact that the cross sections themselves express a certain kind of
probability distributions it is quite natural to look for some statistical approaches in
o.aQ, .,”o get the distributions, e. g., of the form (1) or (2). In the case under
discussion it turns out that the simple urn model presented by B. Friedman in
1949, [2], conveniently generalized and modified leads to expression (1) or (2),
thereby allowing a statistical interpretation of the parameters involved. Moreover,
that generalized and modified model might be considered also as theone which

contains several fundamental statistical features of present-day approaches to high

energy production phenomena, thereby fulfilling the necessary conditions to
caoom:o eventually a “‘standard” statistical model [3] in that domain of phenomena.
Friedman formulated his problem as follows: An urn contains o white and
black balls (we change slightly his notation). One ball is drawn at random and then
1+ & additional balls of the same colour as the drawn ball and n additional balls of
the opposite colour are added to the urn. This procedure is repeated. What is the
vnocmc.::% distribution of the number of white balls in the urn after N draws?
Solving his problem F riedman obtained a difference-differential equation for
the characteristic function of the number of the white balls in the urn after N draws
and he treated also the case when the N-th draw is a white ball. However, the
solution of the aforementioned equation was obtained only in three special cases,
namely, in the case of the Polya-Eggenberger distribution (when & is arbitrary and
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1 =0), in the case of the Ehrenfest model (€ = — 1, n=1) as well as in the case of
the safety campaign (£ =0, n arbitrary).

Polya and Eggenberger [4] derived their probability distribution of “‘con-
tagion” for the number of infected cases during an epidemic. The corresponding
distribution (e.g. also [5]) with its special cases is discussed in more detail, e.g. in
[6]. :

Kac [7] has treated the case £= —1, n=1 in another formulation of the
Ehrenfest model [8] of heat exchange between two isolated bodies of unequal
temperatures. From the model Newton’s law of cooling can be derived; more
references to the connection of this approach with the Brownian motion can be
found in [7].

Schrédinger and Kohlrausch [9] pointed out that the Ehrenfest model was
also equivalent to a random walk problem (more about that as well as about the
classical gambler’s ruin problem can be found, e.g. in [10]; compair also with [11]).

The generalization of the aforementioned simple urn problem is formulated in
the next Section of the present paper and in Sect. III a procedure is developed
which leads to its solution in an explicit form. The solution of the Friedman
problem then follows in Sect. IV as a special case of the generalized probability
distribution. Already this special case leads to the curves which have several
interpretations ;, let us mention at least some of them: i) the fast hadron dis-
tributions, ii) the distribution of the deep inelastic structure function, iii) the energy
distribution of different muons for Drell-Yan trimuons and the invariant mass
distributions, iv) the rapidity distributions of away side jets resulting from different
quark-gluon scattering processes, etc; moreover, qualitatively also the shape of the
probability distribution can be obtained, as it follows from the solution of the
non-linear Fokker-Planck equation in the laser problem.

Section V contains the asymptotic cases of the generalized distribution when the
numbers of the constituents and then the number of draws are large ; in those cases
the binomial and then the Poisson distributions are established. Section VI deals
with a modification of the urn model which takes into account the case that there
exists also a non-vanishing probability of drawing no ball at all from the urn: in this
case the aforementioned asymptotics is slightly modified. This case allows to
express statistically also the confinement of the constituents of the given sort. The
last Section contains several concluding remarks.

Il. GENERALIZATION OF THE SIMPLE URN MODEL

Let us consider in an intermediate state or in a box, in Ref. [2] called the “urn”,
a set of objects (like molecules, atoms, nucleons, quarks, partons or their clusters)
with some property which gives rise to a distinction between their subsets (like a set
of quantum numbers). Such objects wil be called in the present paper “balls”, and
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their distinguishing property ““colour” ; each ball has one colour. The problem to be
solved is formulated as follows:

i) There are s sorts of coloured balls (s is an arbitrary positive integer). There
are 3, balls of the r-th colour; in the present paper we use always

r=1,2,

all B, are arbitrary.
ii) A ball, say of the f-th colour,

f=1,2,

is drawn at random and put back. Then just ¢, new balls are added there to the
balls of the r-th colour (¢, ’s need not be positive, whereby ¢creation as well as
annihilation of the balls might be introduced).

All balls are mixed together and the next draw might be performed.

First of all we look for the (generalized) probability that in N draws (N=1) the
ball of the f-th colour is drawn altogether K-times (0<K=<N).

The procedure developed in the present paper does allow to distinguish the
sequence of the draws in which the coloured ball under consideration is (or is not)
drawn. This circumstance allows then to obtain the aforementioned probability,
e.g., with the inclusion of the probability that the ball of the f-th colour is (or is not)
drawn in a special set of draws. We specify this probability at least for two cases,
namely for the case when the ball of the f-th colour a) is drawn in all first a, as well

as in all Jast w, draws, where a, +w.<K; b) is not drawn at all in the first a_ and’

in the last w_ draws, where a_+w_<N—K.
As far as there is no restriction on the sequence of the draws (ie. a.=w.=0)
both cases a) and b) lead to the generalized probability mentioned above.
4
II. SOLUTION OF THE GENERALIZED URN PROBLEM

Let us start with the statement that the intermediate state contains altogether
>'B.

coloured balls, where

v=3 ®)

Elementary considerations lead us to the following conclusions:
1. The probability that in the first draw the ball of the f-th oo_ocn
a) is drawn is given by

Z_Ixw o
P VM\w, )

b) is not drawn is given by

wo B B
Nv K=0 = M\mwltﬂ M~m~¢ ) AMV

where

X=X (6)
) i=ir
G*z)
in the present case j, =1 and z =f. It will be seen later that in the limit when the
starting numbers of the balls, 8, (as well as when the number of draws, N) are very
big, it is convenient to interpret just the probability (5) as the Feynman scaling
variable, xg, (cf. rel. (35)).
2. Let us draw altogether two times.
A. Let the first draw be the ball of the f-th colour. The probability that in the
second draw the ball of the f-th colour
a) is drawn again, is given by

~XZ =2) _ Nw\ ux +n.§

BTG rq) qv
b) is not drawn, is given by
5 B +c¢y
6 % T ) @

B. Let the first draw be not the ball of the f-th colour. The probability that in the
second draw the ball of the f-th colour
a) is drawn, is given by

B__bite
M . 2'(B +¢,)’ ©)
b) is again not drawn, is given by
AZNNV mﬁ 12 Ho
R T S T rey =

The sum of the expressions (8) and (9) gives the probability that in two draws the
ball of the f-th colour is drawn only once (and the sequence of the draws is not
distinguished).

3. The continuation of the aforementioned procedure leads to the following
conclusions :

A. The probability that in N draws the ball of the f-th colour is drawn K =N
times is given by



wn_ B Bt . _Bt+IN-1Dqg -
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B. The probability that in N(=2) draws the ball of the f-th colour is drawn
K =N -1 times can be found as follows:

a) if that ball is not drawn

i) just in the first draw, the probability is given by

==
=
\
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ii) only in the second draw, the probability is given by
By B +cp Br+cy+cy Brtey+(IN—2)¢y _ 13
2
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iii) only in the v-th draw, where v=1+1, uno,.f 2, ..., K (we recall that
K=N-1), the probability is given by ‘

b B
WVZuvz.._Aﬂv - M AMAUW\LWZ M.MH + ﬂv\ M\“MM. 52
' i Crr r r
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(14)

X

b) Using rel. (14), the summation

K, 3
M TM(nleAdvmmum,le AHMV
=0
gives the (total) probability that in N draws the ball of the f-th colour is drawn
K=N-1 times.
c) If instead of the Lh.s. of rel. (15) the following summation is considered,

uMlUx WMM.NZIRHV AH@V

T=Trmin

(withO0<rt .<1..<K ), the probability is obtained that in N draws the ball of the
f-th colour is drawn K = N — 1 times including the probability that it is drawn in all
first 7., as well as in all last K —1,,., draws.

d) On the other hand, using rel. (14), also the probability can be deduced that
the ball of the f-th colour is drawn K = N — 1 times including the probability that

i) itis not drawn once in the first (7, + 1)draws, 7, =0, 1,2, ..., K;itis given by

d.!

2 P&y () 17)

=0

ii) it is not drawn once in the last (N—t)draws 1,=0, 1, 2; .., K; itis given by

K

> P&y (1), g

=1,

C. With respect to the procedure just briefly outlined the probability can be
looked for that in N draws the ball of the f-th colour is drawn K = N — 2 times with
the condition that it is not drawn in the first as well as in the v,-th draw
(vi=2,3,4,...,N); then, in the next step with the condition that it is not drawn
out in the second nor in the v,-nd draw (v2=3,4, ..., N), etc. If we add together all
those expressions, the sought probability follows. With the appropriate summation
analogous to (16) and (17) again the probabilities can be obtained that the ball of
the f-th colour is (or is not) drawn in some first as well as in some last draws.

Similarly we can continue in cases when the ball of the f-th colour is drawn
K-times where K=N-3,N-4,..,2.1,0.

4. The aforementioned procedure leads to the probability P that in N draws
the ball of the f-th colour is drawn K times ; We express it by means of the function
P, which is introduced as follows,
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where
Vii=cte +...+¢,, (20)

and the summations over ()’ s are to be understood in the sense of rel. (6).
Now, for K<N the probability P is given by

PR=PP(z=f.j=1; all b=1; e
(To)min=To-1, (To)uax=K for 6=1,2, .., N~K:

(T)min=T0= 0};
if K= N, the probability PE?,, is given by rel. (11), which can be obtained also from
rel. (21) with apt definitions. )
The probability (21) together with (11) is normalized in the sens€ that

N

> PY=1. . (22)
K=0
We note that the number of summations over ()’ s in rel. (19) says how many
times the ball of the f-th colour is not drawn. Moreover, the structure of rel. (19) is
such that the ball of the f-th colour is not drawn just the o-th times (o=
1,2,..., N-K) in the (t, + 0)-th draw.
5. Taking into account the aforementioned procedure, the following prob-
abilities are obtained:
A. The probability that in N draws the ball of the f-th colour is drawn K times
and including the probability that
a) it is drawn in all first a,, (@+=0,1,2,...,K) as well as in all last w.,
(we=0,1,2, .., K) draws, a, +w, <K it is given as follows,
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Pz=f,ji=1; all b=1; , (23)
(To)min=To-1s (To)mu=K —w, for o= 1,2,..,N-K:
To=a,},

where 2" is given by rel. (19); if a,=w, =0, the expression (23) gives the
probability (21);

b) it is not drawn in all first a(a-=0,1,2,..,N—K) nor in all last w_
(w-=0,1,2,..,N-K) draws, O0<a_-+w_-<N-Kj; it is given as follows,

P z=f,j.=1; all b=1; (24)

(@) (T)min=0, (T.)mx=0 for o=1,2, ..., a.;

() (Toduin="T0-1, (To)max=K for o'=a_+1, a_+2, o N—-K—w_;
©) (T)min=K, (T.)mx=K for o0=N-K-w_+1,..,N-K;
1,=0},

where 2" is given by rel. (19).

As to the expression (24) it is worthwhile to note that
(i) if no first draws are specified (a_=0, w_# 0), then the line (a) is to be omitted,
(i) if no last draws are specified (w_=0, a_+ 0), then the line (c) is to be omitted,
(iii) if @a_=0, w_=0, then both lines (2) and (c) are to be omitted; in the latter
case the probability (21) is again reproduced;
(iv) if a-+w_=N—K, then the line {(b) is to be omitted.

B. Similarly the inclusion of the probability might be considered that the ball of
the given colour is (or is not) drawn in another sequence of draws; in the present
Section we do not enter into those details nor in other generalizations.

IV. SPECIAL CASES

1. Let us discuss in some more details the case of two colours, say white and
black; then s =2 and let 8, =a, 8,=p8. Moreover in any draw we add £ balls of the

‘colour which was drawn as well as n balls of the other colour, i.e. ¢,, =cp=§,

€i2=¢Cz:=n. The probability to draw K times the white ball in N draws follows

from rel. (21) in the form ,
e
g* E+n

P{a, B; E, 3u®+iz nmv X (25)
\E
AQ+AMI5:+5 e AQ+AM|::+§V
X [T X [B+(0-1E+uy]
: +Nw o=1 to=1,_, (a+
ﬁmﬂiﬁ A’Q m§+i
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N-K

with 7,=0 and if K=N, then []...=1. Rel. (25) represents the solution of the

o=1
Friedman problem; it allows also to express simply the reversibility property of the
system: the probability of drawing a white ball K times in N draws is equal to the
probability of drawing a black ball (N—K) times, i.e.

PEa, B5 &, n)=PR2%(B, a; £, n). (26)
For instance, the expression P&" (B, a; &, n) gives also the probability that in N
draws the white ball is not drawn at all.
Rel. (25) implies the Polya distribution if # =0 and using the relation

zL«al‘ZlaoIZIs.o Zx-:
m_ 2 _HL,Zlequls‘vu.Hﬁwfqov_ @7

(for the proof cf. ref. [12]); it has the following form (with 7,=0),
ek r(Ben-k) o6
PEa, B; €, 0)=(N) Merxrigenx) %)

R

2. The normalized probability distribution (25) is presented in the form of
several Figures for some values of the parameters involved ; those are chosen only
to see more clearly the typical behaviour of that probability distribution; the
change of those parameters leads to the change of the height and of the shape of the
extremes as well as to the shift of their location. Especially, Fig. la presents the
distribution (25) for a “symmetrical” case (a=p): it is interesting to compare it
with Fig. 1b taken from [13], where the rapidity distribution of away side jets
resulting from different quark-gluon scattering processes is presented. Moreover,
a qualitatively similar behaviour is seen also in Fig. 1c, where a class of solutions of
the nonlinear Fokker-Planck equation for the laser model (with different values of
the drift term) is presented (taken from [14]). '/

Furthermore, we see in Fig. 2a an “unsymmetrical” case (a#B) of the
probability (25), while in Fig. 2b the fits to data on deep inelastic electroproduction

To=Tg—

1(
N=10 — M=0
£=10 —_T=1

pruf X7B ot

) e =10

sl 0 e 1 =50

Fig. la. The normalized probability distribution
Py (a, B E, ), rel. (25), for several values of
the parameter 7.

-2 -1 o 1 217

Fig. 1b. The rapidity distribution of away side jets resulting from different quark-gluon scattering
processes; the curve (qt) corresponds to the quark trigger and (gt) to the gluon trigger (from [13]).

—

fZnp

Fig. Ic. A distribution as it follows from the
non-linear Fokker-Planck equation for the laser
model with different values of the drift term (from 4 ) )

[14]). -1 -05 0 05 1 X

‘(taken from [15]), in Fig. 2c the energy distribution of fast (u7) and of slow (u5)

negative muons as well as of positive muons (1) for Drell-Yan trimuons averaged
over the Harward-Pennsylvania-Wisconsin-Fermilab spectrum, and in Fig. 2d the
invariant mass distributions for the same spectrum (the two last Figures are taken
from [16]), in Fig. 2e the fast hadron distributions taken from Ref. [3], [17] (the full
curves correspond to the experimental data). Moreover, other dependences of the
probability (25) are seen in Figs. 3a, 3b, 3c. A lot of other high energy
distributions, recently published in different papers might be quoted as well. The
comparison of those Figures with the behaviour of the probability (25) suggests
that the statistical approach developed in the present paper contains several
common features of a wide class of production phenomena, where statistical
approaches are to be considered.
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Fig. 2a. The probability P& (a,B;E,n), rel.
(25), for an “unsymmetrical” case, a ¥ .

Fig. 2b. The fits to data on deep inelastic electro-

production (from [15)).
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Fig. 2c. The energy distribution of fast (15) and
slow (1) negative muons as well as of positive
muons (i *) for Drell-Yan trimuons (from [16]).
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Fig. 2e. Fast hadron distributions (from [3], {17]).
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Fig. 3a, b, c. Several dependences of the probability PL" (a,B;&, 1), rel. (25), on the number of

draws, N.

V. ASYMPTOTIC CASES

1. Let us assume that the starting numbers of all balls are very big, i.e. let there
be a sea of balls (quarks) of each colour,

B, — (28a)

and let at the same time

len| <8,

(28b)
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for all ¢,’s as well as 8, s. Taking into account only the leading term of the Stirling
expansion for the I'-function we obtain from rel. (21)

POz (36) /by (29)

where
N
- 30
z=(y)- (30)
The probability (29) represents essentially the binomial distribution.

2. In the next step let us consider the limit when the number of draws is very big,
N-— oo, 31)

As it is convenient, the number of draws, N, might be identified with any physical
quantity (like energy, momentum transfer squared, etc.).
With respect to the relation .

K
lim ( M ) nmt_ (32a)
and
lim Aﬂlh.vzumé (32b)
Neseo N ,
we obtain from rel. (29)
m.m&lvmll._a AM\?@!@Vaoxv A IZM%\WV. (33)

A
The r.hs. of rel. (33) represents the Poisson distribution; it can be rewritten in
different ways in the form of rel. (1),

a(l—xg)" exp (—bPy), (D)
e.g. in such a way that
’ K
aukﬁ%mmmﬂv . EmE, (34)
! r ¢
2B, =B N5 35
Xe = S @WqI.ZM\h‘. (35)

According to the second equality in rel. (34), the parameter c in rel. (1) expresses
directly the probability of the number of elementary acts (creations and an-
nihilations) in the intermediate state; moreover, with respect to ref. [18], that
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parameter might be simply connected with the slope @, of the Regge trajectory.
Another way of consideration leads simply from rel. (33) only to the leading factor
of the exponential behaviour, namely to the expression

m.mélv.oxv A -N M@uw v . , (36)

3. Let the number of balls of each colour approach infinity with the same
speed. Then

B/Z'B.—1/s : 37
and rel. (33) gives
N¥/ 1 X 1 .
(N) AN S —i
P lwW_Aulwv nxUA mzv (33a)
and rel. (35) gives
’ xe=1-1 (38)
as well as B
Ewu%uzc ) (39)

we see that the Feynman scaling variable x; and the slope b are directly related to
the number of sorts of constituents s. Moreover, let us consider a physical
phenomenon which decreases exponentially with (say) energy,

~exp (—AE/E,), )

where E, fixes the energy scale. Now, identifying the number of draws, N, with the
energy measured in a convenient scale

N~E/E,, (40)
the comparison of rel. (36) with (2) gives

A~1/s. (41)
Rel. (41) suggests an alternative interpretation of the parameters (slopes) which
enter into the exponential decrease of the form (2): in the (say) energy range
where the exponential law (2) is valid, the parameter A determines the number of
sorts of constituents of the matter which are to be introduced in order to obtain just
that exponential decrease.

As far as the statistical approach developed in the present paper is adequate to
the physical phenomena under investigation it is worthwhile to emphasize that the
details of the dynamics (i.e. the coefficients ¢) do not enter into the asymptotics
(29), (33) nor into the related expressions and therefore the asymptotics might fix

only the number of sorts of constituents which are to be introduced at those (say)
energies.

17



4. Let us consider the case when the probability is included in PY” that the ball
of the f-th colour

a) is .aqws\: in all first a, as well as in all last w, draws, as it was done in rel. (23).
In w:n limit 8, — oo the leading term of rel. (23) again has the form (29) but now
(using rel. (27)) the factor Z is given by

_(N-a,.—w,
NIAWIQ+|8+V, (422)
which in the limit N— o gives
AZ' a. .Ie+v~nln+18+ ZNID+|E+
K-a.-0)! “EK-a<all (432)

With .Q+ =w.,=0rel. (32a) is established ;
b) is .:o.ﬂ drawn in all first a_ nor in all last ¢_ draws, as it was done in rel. (24).
In the limit B, — o the leading term of (24) has again the form (29) but now

N-a_ -ow. .
NnA e v (42b)
which in the limit N—s oo gives
(N-a_—w)* N~
%] o (43b)

c) It can be seen that the introduction of the parameters a., w,, w- as well as of
the “effective” threshold a_ does not change the functional form of the asymptotics
29) on. (33): it influences only their normalization. Due to the fact that the
normalization is not very well known from the data, the introduction of those
parameters does not help to read off more details of dynamics from the asymptotic
formulae. This fact cannot be improved by introducing the draw dependent (or in

wﬂr.an way conditioned) coefficients ¢, as far as the condition (28b) is valid in the
limit (28a).

. m.. There is another sector-of asymptotic formulae which can be reached if in the
limit (28a) the inequality (28b) is not valid, i.e. if so many balls (quarks) of some
colours are created in the intermediate state that their numbers c,, are proportional
to the ma.u:m:m numbers f3,. Then with increasing f3, also the corresponding (not
necessarily all) ¢,’s increase (in absolute value). However, the form of the
oo:owvo:&:m asymptotic formulae depends on additional assumptions ; they are
not discussed in the present contribution.

We recall that the functional form of the asymptotics might be changed also in
such a way that the increasing parameter N is identified not directly with (say) the
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energy as in rel. (40) but with (e.g.) the logarithm of the energy. Then rel. (36)
leads to the power law decrease which with respect to rel. (37) has the form

Nvmﬂzv )\mlncaw_\,qq A&h\v

where s is the number of the sorts of the constituents (quarks etc.) which can be
distinguished at those energies. (Some of the aforementioned results have been
presented at the 1978 Liblice conference, ref. Tﬁ.v.

VIi. MODIFIED URN MODEL

In the present Section we consider briefly a modification of the urn model which
involves the possibility that from the urn no ball at all is drawn; especially the
procedure of Sect. II is here slightly modified.

1. Let us assume that

i) There are s sorts of coloured balls (s is an arbitrary positive integer). There
are B, balls of the r-th colour,

r=1,2,...,s; 45)
all §, are arbitrary. Usually the expression

BB+ B+ ... +B)

gives the probability of drawing a ball of the r-th colour.

Due to the fact that we want to take into account also the possibility that in some
draws there is no ball drawn at all from the urn under consideration, we define the
probability that the ball of the r-th colour is drawn as follows

b, /(B + P+ ... +B.), (46)
where the weights b, are real and arbitrarily chosen from the interval
0<bh <1; (47)

they might be considered as reflecting the fundamental properties of the forces
which influence how ““easily” a constituent can be “‘drawn” (in another case, when
a cube is thrown they might be related to the circumstance that not each edge is
exactly like the others).

If the forces acting on the constituents of the r-th sort are very strong, the
probability to observe those constituents (to draw them at a finite draw) is very
small; the limit when the aforementioned probability decreases to zero (i.e. the
attractive forces increase to infinity) is reflected in rel. (46) (and in its
generalizations) by the condition

b, —0. (47a)
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Moreover, let us define the probabilty that in a draw there is not drawn any ball
at all from the urn, as follows

boBo/ (B + B+ ...+ ), (48)

(b.p, +v~h~+.:+?@b+ocﬁcl
Bi+B+.. . +B, -

or

boBo=2"6,(1~b,) (50)

(the mcﬂiu:.os 2’ is given by rel. (3)). The introduction of the parameter f, is
convenient also with respect to the discussion of the asymptotic cases ; at present it
might be an arbitrary real number.

The procedure just described allows us to consider the case of drawing no ball as
the case of drawing the ball of the “zeroth” colour; therefore, formally we shall
consider the case of s + 1 colours with

¢=0,1,2,..5:

the weights b, are connected by rel. (49) (one of them depends on the others). To
be o.o:oﬂmﬂ.o We assume that all b,, r given by rel. (45), are known from outer
considerations and b, is determined by rel, (49).

ii) A ball, say of the @-th colour is drawn at random and it is put back. Then just
Coo (20) new balls are added to the balls of the ©-th colour,

e=0,1,2, ... 5.

The meaning of the coefficients c,, is known from Sect. IT and now the coefficients

Co- specify the number of balls which are added to the balls of the r-th cdlour if no-

ball is drawn;

. The aforementioned procedure allows to create (or annihilate) the constituents
In any elementary act in the intermediate state even in the case when no constituent
Is “drawn”: the formulation of the problem in Sect. II does not allow that
possibility due to the fact that there a ball of a colour always must be drawn.
Therefore, now the “thresholds” might be introduced on a more physical basis.

be(Be +coo)/Z' (B, + c,) (51)

gives the probability that the ball of the ©-th colour is drawn in the next draw. At
the present stage we assume that the coefficients c,, are given, while the
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coefficients c,, are determined by means of the normalization of the probability,

namely, ’
b Ukhw + Geav + @:Amc + ﬁecv =1 AMNV
2B +c,)
or using rel. (50)
2'cx(1—05,) (53)

. Coo= M\mwﬁﬂ I.@wv m:
(if all b, =1, then all ¢,=0). The fulfilment of the condition (53) assures that the
probability under consideration in any number of draws is normalized to unity.
2. Similarly as in Sect. II, in the present case we look for the (modified)
probability PX" that in N draws the ball of the @-th colour is drawn altogether
K-times. Using essentially the procedure as it is described in Sect. I1I and then Rel.
(19), we obtain that probability in the following form,
=P (z=9, j.=0; :
b, are real and fulfilling Rel. (47), while b, is given by Rel. (50);
(T )min=To-1, (T)ax =K for o= 1,2, .,N-K;
()i =To= 0}, (54)
say for K=0, 1,2, ..., N—1 while for K=N we have
; B >,
N) Aveneevz Anﬁu +2v ey v
K = ' i '
Z'cy, HA Bs v 2'B, " Zv

’
Cow 2/ Co

d (55)

Now again the probabilities analogous to those given by Rels. (23) and (24) are
easily expressed.

3. The investigation of the limit of the probability (54), (55) when all B’s
approach infinity leads to the following form of the (what might be called) binomial

distribution,

N-K
N BB (S b6, )
(%) > (56)
/N AM~mva ’
where : : .
e*q
and the limit N— o leads from expression (56) to
K K
RAEV nx_uAIZPWFV. (57)
K! 3'B,
2 b,

(e)
With the assumption that for N — o the quantity
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b
N Mwmwmv« is finite (58)

(% depends on the @-th sort) the expression (57) can be again rewitten in the
standard Poisson form,

(KY) '™ exp (— x). (59
4. To formulate the Moivre-Laplace limiting theorem let us denote
bof3./Z'B, =P, M bB./Z'B,=Q, (60)
S b,8./Z'8, = R (61)
with "~
. P+Q=R; (62)
moreover let
y =(KR — NP)/VNPQ. (63)
Now, rel. (56) in the limit N— o together with the conditions
us“ (NPQ/R?) = oo, (64)
i:B y is finite . (65)

N—»ao

leads to the Gaussian distribution in the form

R .. 1 yR¥(y*-3), P _P 1 w
et I 4+ YR T 3L s T Vv rol=) L (66
vaanpo - U TUN 6QVPQ R wNV sz (66)

However, taking into account the normalization condition rel. (50) in rel. (61), we
obtain R=1; this value simplifies then also the expression (66).

5. If all B’s approach infinity with the same speed we obtain from (57)
7
K
% N by wx_uAIZmWve 67)
’ > b,
{e)
in this case the comparison of (67) with the exponential decrease (2) gives

A~b,/s (68)

instead of rel. (41) (i.e. the slopes are correlated by the number of sorts of

constituents as well as by the normalized strength of the forces) while the Feynman
scaling variable might be given by
xe=1-b,/Z'b,; (69)
moreover we have from rel. (50)
b,=5—-Z'b,.
6. Itis worthwhile to emphasize that the weights specified by the parameters b,
enter explicitly rels. (68), (69) as well as (63). Especially the limit x-— 1 as well as
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x = finite number (with N— o) can be achieved now not only by divergent Z'b,
(including essentially the condition that the number of the sorts-of constituents
increases over any limit) but, for a given @, @ # 0, also by b, -0 (i.e. rel. (47a)),
expressing essentially the fact that even if there exist constituents of the g-th sort,
i.e. B,#0 (in the last approximations we had f,— ), the probability to observe
those constituents in finite draws approaches zero: this is just the statistical
expression of the confinement of the constituents of that ¢-th sort.

VII. CONCLUSIONS

The solution of the generalized urn problem, rel. (21), together with rels. (23)
and (24) as well as of the modified urn problem, rel. (54) and others, suggest
several physical implications ; some special cases are mentioned in Sect. I'V. Those
solutions can serve also as the basis for the construction of a unified point of view as
regards a wide set of physical phenomena where the change of the number of
constituents in the intermediate state plays an important role.

The fit of the asymptotic leading term (33) with the data gives the easiest
possibility to determine the number of the sorts of constituents which influence the
process under consideration. On the other hand, if that number is known from
other sources, the asymptotic leading term serves to fix the scale of the physical
variable which is identified with the number of draws, N, and with respect to rel.
(68) it serves to determine the weights b,. The approach developed in Sect. VI
suggests also a statistical interpretation of the confinement.

In the framework of the statistical approach developed in the present paper the
details of the dynamics (i.e. the coefficients ¢, or c,, as well as the parameters a, ©
or others) can be determined by the exact form (say, using a convenient fitting
procedure) of the distribution (21) (or of the other related distributions) as well as
by the corrections to the asymptotic leading term, i.e. in the region where the
deviations from the “pure” asymptotical behaviour are observed.

The combination of several probabilities PE” for different colours which have
been drawn allows to consider the cases when more sorts of objects are observed.

In several cases the statistical distributions discussed in the present paper might
replace the distributions based on the Monte Carlo approaches with the advantage
that the parameters involved in the present paper offer an immediate physical
interpretatian.
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NOTE ADDED IN PROOF: Another interpretation of the probability distribution P&,
rel. (25) with N=E, follows from the comparison of Figs. 3a, 3b, 3c of the
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present paper with Fig. 4 (and with other Figure for the thrust) taken from A. Ali et

al., Jet-like distributions from the weak decay of heavy quarks, DESY preprint
78/47, Sept. 1978.
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4. The average sphericity vs. centre-of-mass energy for several intermediate states of the
electron-positron annihilation leading to six jets.
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